Mirror and Circular Symmetry of Autofocusing Beams
Abstract
:1. Introduction
2. Acceleration of Asymmetric Beams
3. Results
3.1. Beams with a Mirror Symmetry
3.2. Beams with a Circular Symmetry
4. Discussion
5. Conclusions
- (1)
- The asymmetry and nonlinear dependence in the transverse distribution of beams provide nonlinearity to the propagation trajectory (acceleration property); however, for simple control of the linear trajectory of a conventional beam (for example, the Gaussian beam), one can use its displacement in the input plane and an additional linear phase function.
- (2)
- The autofocusing property was obtained for a variety of beams (including half-HG beams, truncated Bessel beams, and inverted LG beams) when they were provided with mirror symmetry.
- (3)
- A similar effect is seen for a circular symmetrization of asymmetric distributions, but the focus intensity, in this case, is much greater.
Funding
Acknowledgments
Conflicts of Interest
References
- Efremidis, N.K.; Christodoulides, D.N. Abruptly autofocusing waves. Opt. Lett. 2010, 35, 4045–4047. [Google Scholar] [CrossRef]
- Chremmos, I.; Efremidis, N.K.; Christodoulides, D.N. Pre-engineered abruptly autofocusing beams. Opt. Lett. 2011, 36, 1890–1892. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A.; Cottrell, D.M.; Sand, D. Abruptly autofocusing vortex beams. Opt. Express 2012, 20, 13302–13310. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Khonina, S.N. Generation of the azimuthally modulated circular superlinear Airy beams. J. Opt. Soc. Am. B 2017, 34, 2544–2549. [Google Scholar] [CrossRef]
- Siviloglou, G.A.; Christodoulides, D.N. Accelerating finite energy Airy beams. Opt. Lett. 2007, 32, 979–981. [Google Scholar] [CrossRef] [PubMed]
- Besieris, I.M.; Shaarawi, A.M. A note on an accelerating finite energy Airy beam. Opt. Lett. 2007, 32, 2447–2449. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Prakash, J.; Zhang, Z.; Mills, M.S.; Efremidis, N.K.; Christodoulides, D.N.; Chen, Z. Trapping and guiding microparticles with morphing autofocusing Airy beams. Opt. Lett. 2011, 36, 2883–2885. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, K.; Lu, X. Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle. Opt. Express 2013, 21, 24413–24421. [Google Scholar] [CrossRef]
- Manousidaki, M.; Papazoglou, D.G.; Farsari, M.; Tzortzakis, S. Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Optica 2016, 3, 525–530. [Google Scholar] [CrossRef]
- Panagiotopoulos, P.; Papazoglou, D.G.; Couairon, A.; Tzortzakis, S. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets. Nat. Commun. 2013, 4, 2622. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wang, M.; Li, P.; Zhang, P.; Zhao, J. Abrupt polarization transition of vector autofocusing Airy beams. Opt. Lett. 2013, 38, 2416–2418. [Google Scholar] [CrossRef] [PubMed]
- Degtyarev, S.A.; Volotovsky, S.G.; Khonina, S.N. Sublinearly chirped metalenses for forming abruptly autofocusing cylindrically polarized beams. J. Opt. Soc. Am. B 2018, 35, 1963–1969. [Google Scholar] [CrossRef]
- Ring, J.; Lindberg, J.; Mourka, A.; Mazilu, M.; Dholakia, K.; Dennis, M. Auto-focusing and self-healing of Pearcey beams. Opt. Express 2012, 20, 18955–18966. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Deng, D.; Zhuang, J.; Yang, X.; Liu, H.; Wang, G. Nonparaxial propagation of abruptly autofocusing circular Pearcey Gaussian beams. Appl. Opt. 2018, 57, 8418–8423. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Ustinov, A.V.; Porfirev, A.P. Aberration laser beams with autofocusing properties. Appl. Opt. 2018, 57, 1410–1416. [Google Scholar] [CrossRef]
- Khonina, S.N. Specular and vortical Airy beams. Opt. Commun. 2011, 284, 4263–4271. [Google Scholar] [CrossRef]
- Vaveliuk, P.; Lencina, A.; Rodrigo, J.A.; Matos, O.M. Symmetric Airy beams. Opt. Lett. 2014, 39, 2370–2373. [Google Scholar] [CrossRef] [Green Version]
- Khonina, S.N.; Porfirev, A.P.; Fomchenkov, S.A.; Larkin, A.S.; Savelyev-Trofimov, A.B. Generation of closely located light spots using specular Airy laser beams. Comput. Opt. 2017, 41, 661–669. [Google Scholar] [CrossRef]
- Belafhal, A.; Ez-Zariy, L.; Hennani, S.; Nebd, H. Theoretical introduction and generation method of a novel nondiffracting waves: Olver beams. Opt. Photon. J. 2015, 5, 234–246. [Google Scholar] [CrossRef] [Green Version]
- Khonina, S.N.; Ustinov, A.V. Fractional Airy beams. J. Opt. Soc. Am. A 2017, 34, 1991–1999. [Google Scholar] [CrossRef]
- Namias, V. The fractional Fourier transform and its application in quantum mechanics. JIMA 1980, 25, 241–265. [Google Scholar] [CrossRef]
- Abe, S.; Sheridant, J.T. Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: An operator approach. J. Phys. A Math. Gen. 1994, 27, 4179–4187. [Google Scholar] [CrossRef]
- Alieva, T.; Bastiaans, M.J.; Calvo, M.L. Fractional transforms in optical information processing. EURASIP J. Appl. Signal Process. 2005, 10, 920687. [Google Scholar] [CrossRef] [Green Version]
- Mendlovic, D.; Ozaktas, H.M. Fractional Fourier transformations and their optical implementation: I. J. Opt. Soc. Am. A 1993, 10, 1875–1881. [Google Scholar] [CrossRef] [Green Version]
- Kirilenko, M.S.; Khonina, S.N. Formation of signals matched with vortex eigenfunctions of bounded double lens system. Opt. Commun. 2018, 410, 153–159. [Google Scholar] [CrossRef]
- McMullin, J.N. The ABCD matrix in arbitrarily tapered quadratic-index waveguides. Appl. Opt. 1986, 25, 2184–2187. [Google Scholar] [CrossRef]
- Mossoulina, O.A.; Kirilenko, M.S.; Khonina, S.N. Simulation of vortex laser beams propagation in parabolic index media based on fractional Fourier transform. J. Phys. Conf. Ser. 2016, 741, 012142. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.V.; Balazs, N.L. Nonspreading wave packets. Am. J. Phys. 1979, 47, 264. [Google Scholar] [CrossRef]
- Saari, P. Laterally accelerating Airy pulses. Opt. Express 2008, 16, 10303–10308. [Google Scholar] [CrossRef]
- Li, H.H.; Wang, J.G.; Tang, M.M.; Li, X.Z. Propagation properties of cosh-Airy beams. J. Mod. Opt. 2018, 65, 314–320. [Google Scholar] [CrossRef]
- Kovalev, A.A.; Kotlyar, V.V.; Zaskanov, S.G. Structurally stable three-dimensional and two-dimensional laser half Pearcey beams. Comput. Opt. 2014, 38, 193–197. [Google Scholar] [CrossRef]
- Feng, Z.; Yan, W.; Lu, L. Dual self-accelerating properties of one-dimensional finite energy Pearcey beam. Results Phys. 2019, 15, 102656. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1972. [Google Scholar]
- Khonina, S.N.; Porfirev, A.P.; Ustinov, A.V. Sudden autofocusing of superlinear chirp beams. J. Opt. 2018, 20, 025605. [Google Scholar] [CrossRef]
- Ustinov, A.V.; Khonina, S.N. Properties of off-axis caustics of autofocusing chirp beams. Comput. Opt. 2020, 44, 721–727. [Google Scholar] [CrossRef]
- Turunen, J.; Vasara, A.; Friberg, A.T. Holographic generation of diffraction-free beams. Appl. Opt. 1988, 27, 3959–3962. [Google Scholar] [CrossRef] [PubMed]
- Akturk, S.; Arnold, C.L.; Prade, B.; Mysyrowicz, A. Generation of high quality tunable Bessel beams using a liquid-immersion axicon. Opt. Commun. 2009, 282, 3206–3209. [Google Scholar] [CrossRef] [Green Version]
- Khonina, S.N.; Serafimovich, P.G.; Savelyev, D.A.; Pustovoi, I.A. Diffraction at binary microaxicons in the near field. J. Opt. Technol. 2012, 79, 626–631. [Google Scholar] [CrossRef]
- Fedotowsky, A.; Lehovec, K. Far field diffraction patterns of circular gratings. Appl. Opt. 1974, 13, 2638–2642. [Google Scholar] [CrossRef]
- Amidror, I. Fourier spectrum of radially periodic images. J. Opt. Soc. Am. A 1997, 14, 816–826. [Google Scholar] [CrossRef]
- Khonina, S.N.; Porfirev, A.P. 3D transformations of light fields in the focal region implemented by diffractive axicons. Appl. Phys. B 2018, 124, 191. [Google Scholar] [CrossRef]
- Davidson, N.; Friesem, A.A.; Hasman, E. Holographic axilens: High resolution and long focal depth. Opt. Lett. 1991, 16, 523–525. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V. Very compact focal spot in the near-field of the fractional axicon. Opt. Commun. 2017, 391, 24–29. [Google Scholar] [CrossRef]
- Gorelick, S.; Paganin, D.M.; de Marco, A. Axilenses: Refractive micro-optical elements with arbitrary exponential profiles. APL Photon. 2020, 5, 106110. [Google Scholar] [CrossRef]
- Poston, T.; Stewart, I. Catastrophe Theory and Its Applications; Dover Publication Inc.: Mineola, NY, USA, 1978; ISBN 0-486-69271-X. [Google Scholar]
- Gilmore, R. Catastrophe Theory for Scientists and Engineers; Dover: New York, NY, USA, 1993; ISBN 978-0-486-67539-8. [Google Scholar]
- Kharitonov, S.I.; Volotovsky, S.G.; Khonina, S.N.; Kazanskiy, N.L. Diffraction catastrophes and asymptotic analysis of caustics from axisymmetric optical elements. Proc. SPIE 2019, 11146, 111460K. [Google Scholar] [CrossRef]
- Greenfield, E.; Segev, M.; Walasik, W.; Raz, O. Accelerating light beams along arbitrary convex trajectories. Phys. Rev. Lett. 2011, 106, 213902. [Google Scholar] [CrossRef]
- Froehly, L.; Courvoisier, F.; Mathis, A.; Jacquot, M.; Furfaro, L.; Giust, R.; Lacourt, P.A.; Dudley, J.M. Arbitrary accelerating micron-scale caustic beams in two and three dimensions. Opt. Express 2011, 19, 16455–16465. [Google Scholar] [CrossRef]
- Chremmos, I.D.; Chen, Z.; Christodoulides, D.N.; Efremidis, N.K. Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics. Phys. Rev. A 2012, 85, 023828. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Xie, C.; Ni, D.; Zhang, Y.; Li, Y.; Courvoisier, F.; Hu, M. Scaling the abruptly autofocusing beams in the direct-space. Opt. Express 2017, 25, 30598–30605. [Google Scholar] [CrossRef] [PubMed]
- Soifer, V.A.; Kharitonov, S.I.; Khonina, S.N.; Volotovsky, S.G. Caustics of vortex optical beams. Dokl. Phys. 2019, 64, 276–279. [Google Scholar] [CrossRef]
- Chen, B.; Chen, C.; Peng, X.; Peng, Y.; Zhou, M.; Deng, D. Propagation of sharply autofocused ring Airy Gaussian vortex beams. Opt. Express 2015, 23, 19288–19298. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhao, S.; Yu, W.; Zhu, X. Abruptly autofocusing property of circular Airy vortex beams with different initial launch angles. J. Opt. Soc. Am. A 2018, 35, 890–894. [Google Scholar] [CrossRef]
- Sun, C.; Deng, D.; Wang, G.; Yang, X.; Hong, W. Abruptly autofocusing properties of radially polarized circle Pearcey vortex beams. Opt. Commun. 2020, 457, 124690. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.; Liu, S.; Han, L.; Cheng, H.; Zhao, J. Manipulating spin-dependent splitting of vector abruptly autofocusing beam by encoding cosine-azimuthal variant phases. Opt. Express 2016, 24, 28409–28418. [Google Scholar] [CrossRef]
- Yan, X.; Guo, L.; Cheng, M.; Chai, S. Free-space propagation of autofocusing Airy vortex beams with controllable intensity gradients. Chin. Opt. Lett. 2019, 17, 040101. [Google Scholar] [CrossRef]
- Brimis, A.; Makris, K.G.; Papazoglou, D.G. Tornado waves. Opt. Lett. 2020, 45, 280–283. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, C.; Lin, Z.; Qiu, H.; Fu, X.; Chen, K.; Deng, D. Abruptly autofocusing polycyclic tornado ring Airy beam. New J. Phys. 2020, 22, 093045. [Google Scholar] [CrossRef]
- Khonina, S.N.; Porfirev, A.P.; Ustinov, A.V.; Butt, M.A. Generation of complex transverse energy flow distributions with autofocusing optical vortex beams. Micromachines 2021, 12, 297. [Google Scholar] [CrossRef]
- Chremmos, I.D.; Zhang, P.; Prakash, J.; Efreidis, N.K.; Christodoulides, D.N.; Chen, Z.G. Fourier-space generation of abruptly autofocusing beams and optical bottle beams. Opt. Lett. 2011, 36, 3675–3677. [Google Scholar] [CrossRef]
- Xu, C.J.; Wu, Y.; Deng, D.M. Multioptical bottles from the second order chirped symmetric airy vortex beams. Opt. Lett. 2020, 45, 3502–3505. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, Z.J.; Xu, C.J.; Fu, X.M.; Chen, K.H.; Qiu, H.X.; Deng, D.M. Off-axis and multi optical bottles from the astigmatic phase ring airy gaussian vortex beams in the free space. Ann. Der Phys. 2020, 532, 2000188. [Google Scholar] [CrossRef]
Type of Asymmetric Beam | Sinus-Analogue of the Beam |
---|---|
(1A) tAi beam, Equation (2), Δ = 0.452 mm | (1B) tSq beam, Equation (7), q = 2, Δ = 0.444 mm |
(2A) half-HG beam, Equation (4), n = 15, Δ = 0.468 mm | (2B) tSq beam, Equation (6), q = 1.5, Δ = 0.468 mm |
(3A) tBs beam, Equation (5), n = 2, Δ = 0.496 mm | (3B) tSq beam, Equation (6), q = 1, Δ = 0.488 mm |
(4A) Gaussian beam, Equation (4), n = 0, Δ = 0.148 mm | (4B) Gγ beam, Equation (7), γ = 50 mm−1, Δ = 0.680 mm |
Type of Beam Graphs of input beams at z = 0 (amplitude of real functions, blue color) and intensity at zmax (red color) | Intensity distribution at propagation (the horizontal axis is z ∊ [15 mm, 285 mm], the vertical axis is x ∊ [−1 mm, 1 mm]) |
Mirror tAi beam, Equations (2) and (8); zmax = 78.7 mm | |
Mirror half-HG beam, Equations (4) and (8), n = 15; zmax = 77.6 mm | |
Mirror tSq beam, Equations (6) and (8), q = 1.5; zmax = 77.7 mm | |
Mirror tBs beam, Equations (5) and (8), n = 2; zmax = 75.2 mm | |
Mirror Gγ beam, Equations (7) and (8), γ = 50 mm−1 zmax = 53.5 mm |
Type of Beam Graphs of input beams at z = 0 (amplitude of real functions, blue color) and intensity at z = f (red color) | Intensity distribution at propagation (the horizontal axis is z ∊ [15 mm, 285 mm], the vertical axis is x ∊ [−1 mm, 1 mm]) |
Symmetric tAi beam, Equations (2) and (10) | |
HG mode, Equations (4) and (10), n = 15 | |
Symmetric tBs beam, Equations (5) and (10), n = 2 | |
Symmetric tSq beam, Equations (6) and (10), q = 0.75 | |
Symmetric Gγ beam, Equations (7) and (10), γ = 45 mm−1 |
Type of Beam Amplitude at z = 0 (left), zmax (central) and z = f (right) | Amplitude distribution at propagation (the horizontal axis is z ∊ [15 mm, 285 mm], the vertical axis is x ∊ [−1 mm, 1 mm]) |
Circular tAi beam, Equations (2) and (11); zmax = 77.6 mm | |
Circular half-HG beam, Equations (4) and (11), n = 15; = 77.1 mm | |
Circular inv-LG beam, Equations (13) and (11), n = 7; = 78.7 mm | |
Circular tSq beam, Equations (6) and (11), q = 1; = 77.1 mm | |
Circular tSq beam, Equations (6) and (11), q = 3; = 78.2 mm |
Type of Beam Amplitude at z = 0 (left), z = f/2 (central) and z = f (right) | Amplitude distribution at propagation (the horizontal axis is z ∊ [15 mm, 285 mm], the vertical axis is x ∊ [−1 mm, 1 mm]) |
Ring tAi beam, Equations (2) and (11) | |
Ring half-HG beam, Equations (4) and (11), n = 14 | |
LG mode, n = 7 | |
Ring tSq beam, Equations (6) and (11), q = 1 | |
Ring tSq beam, Equations (6) and (11), q = 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khonina, S.N. Mirror and Circular Symmetry of Autofocusing Beams. Symmetry 2021, 13, 1794. https://doi.org/10.3390/sym13101794
Khonina SN. Mirror and Circular Symmetry of Autofocusing Beams. Symmetry. 2021; 13(10):1794. https://doi.org/10.3390/sym13101794
Chicago/Turabian StyleKhonina, Svetlana N. 2021. "Mirror and Circular Symmetry of Autofocusing Beams" Symmetry 13, no. 10: 1794. https://doi.org/10.3390/sym13101794
APA StyleKhonina, S. N. (2021). Mirror and Circular Symmetry of Autofocusing Beams. Symmetry, 13(10), 1794. https://doi.org/10.3390/sym13101794