Next Article in Journal
Bi-SANet—Bilateral Network with Scale Attention for Retinal Vessel Segmentation
Previous Article in Journal
A Single-Key Variant of LightMAC_Plus
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Fractional N-Laplacian Problems Defined on the One-Dimensional Subspace

1
Department of Mathematics Education, Inha University, Incheon 22212, Korea
2
Department of Mathematics, Kunsan National University, Kunsan 54150, Korea
*
Author to whom correspondence should be addressed.
Symmetry 2021, 13(10), 1819; https://doi.org/10.3390/sym13101819
Submission received: 23 June 2021 / Revised: 9 September 2021 / Accepted: 16 September 2021 / Published: 29 September 2021
(This article belongs to the Section Mathematics)

Abstract

:
The research of the fractional Orlicz-Sobolev space and the fractional N-Laplacian operators will give the development of nonlinear elasticity theory, electro rheological fluids, non-Newtonian fluid theory in a porous medium as well as Probability and Analysis as they proved to be accurate models to describe different phenomena in Physics, Finance, Image processing and Ecology. We study the number of weak solutions for one-dimensional fractional N-Laplacian systems in the product of the fractional Orlicz-Sobolev spaces, where the corresponding functionals of one-dimensional fractional N-Laplacian systems are even and symmetric. We obtain two results for these problems. One result is that these problems have at least one nontrivial solution under some conditions. The other result is that these problems also have infinitely many weak solutions on the same conditions. We use the variational approach, critical point theory and homology theory on the product of the fractional Orlicz-Sobolev spaces.

1. Introduction

Let ( a , b ) R 1 and 0 < s < 1 be a fractional parameter. Let N denote the dimension of the domain Ω , N denote the left-hand side attached character of the N-function and n denote the dimension of the space { ( u 1 , , u n ) } R n . Let g be an odd, increasing homeomorphism from [ 0 , ) onto [ 0 , ) . Let G be the function defined by
G ( x ) = 0 x g ( t ) d t for   all x 0 .
G is a Young function and also a N-function (The Young function G is defined as follows: G is the Young function if and only if G satisfies that G ( 0 ) = 0 , lim x + G ( x ) = + and G is convex. The N-function G is defined as follows: G is the N-function if and only if lim x 0 G ( x ) x = 0 , lim x G ( x ) x = + , G ( x ) = 0 if and only if x = 0 ). Let α ( x ) , p ( x ) , m ( x ) , γ ( x ) C ( [ a , b ] , R ) be measurable functions with α ( x ) > 0 , 1 < p ( x ) < , m ( x ) > 0 and γ ( x ) > 1 . Let D be an open subset in R n , n 2 , with compact complement C = R n \ D containing θ = ( 0 , , 0 ) . Let | · | be denoted as a R n norm.
We consider the number of weak solutions u = ( u 1 , , u n ) C 1 ( [ a , b ] , D ) for one-dimensional N-Laplacian systems with measurable positive coefficient functions
( Δ ) g s u 1 ( x ) + grad u 1 ( α ( x ) | u ( x ) | p ( x ) ) + grad u 1 ( m ( x ) 1 | u ( x ) | γ ( x ) ) = 0 in ( a , b ) , ( Δ ) g s u n ( x ) + grad u n ( α ( x ) | u ( x ) | p ( x ) ) + grad u n ( m ( x ) 1 | u ( x ) | γ ( x ) ) = 0 in ( a , b ) u i ( a ) = u i ( b ) , u i ( a ) = u i ( b ) for   all 1 i n ,
where grad u i = u i and ( Δ ) g s u i ( x ) is the fractional N-Laplacian operator defined as follows: for each x R and any u i in the fractional Orlicz-Sobolev space W s L G ( ( a , b ) , R ) ,
( Δ ) g s u i ( x ) = P.V. a b g ( | u i ( x ) u i ( y ) | | x y | s ) u i ( x ) u i ( y ) | u i ( x ) u i ( y ) | d y | x y | 1 + s .
Here P . V . denotes the Cauchy principle value. For 0 < s < 1 , ( Δ ) g s is called the fractional N-Laplacian operator and for u = ( u 1 , , u n ) W s L G ( ( a , b ) , R n ) ,
( Δ ) g s u ( x ) = ( ( Δ ) g s u 1 ( x ) , , ( Δ ) g s u n ( x ) ) .
We assume that
(i)
sup { | α ( x ) | u ( x ) | p ( x ) + m ( x ) 1 | u ( x ) | γ ( x ) |
+ grad u ( α ( x ) | u ( x ) | p ( x ) ) + grad u ( m ( x ) 1 | u ( x ) | γ ( x ) ) R n | ( x , u ) ( a , b ) × ( R n \ B R 0 ) } < +
for some R 0 > 0 .
(ii)
α ( x ) | u ( x ) | p ( x ) ) + m ( x ) 1 | u ( x ) | γ ( x ) A d 2 ( u , C ) for ( x , u ) ( a , b ) × U
for some neighborhood U of C, the distance function d ( u , C ) from u to C and a constant A > 0 .
The corresponding functionals of (1)
a b a b [ Σ i = 1 n G ( | u i ( x ) u i ( y ) | | x y | s ) ] d x d y | x y | + a b α ( x ) | u ( x ) | p ( x ) d x + a b m ( x ) 1 | u | γ ( x ) d x
are even and symmetric.
Our problems contain the Orlicz space, the fractional Orlicz-Sobolev space and the fractional N-Laplacian operators. The Orlicz space, the fractional Orlicz-Sobolev space and the fractional N-Laplacian operators arise in the non-linear elasticity theory, electro rheological fluids, non-Newtonian fluid theory, a porous medium and the context of stochastic Lvy processes with jumps. In recent years, Probability and Analysis in the context of Physics, Finance, Image processing and Ecology have been provided the mathematical models containing the Orlicz space, the fractional Orlicz-Sobolev space and the fractional N-Laplacian operators to describe different phenomena.
For The Orlicz space, the fractional Orlicz-Sobolev space and the fractional N-Laplacian operators, we refer to [1,2,3,4,5,6,7,8,9,10,11,12,13,14].
For the singular elliptic systems and the singular problems involving fractional N-Laplacian, we refer to [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35].
Let 0 < s < 1 , p : Ω × Ω ( 1 , ) be a continuous function with 1 < p ( x , y ) < . The fractional Sobolev spaces with variable exponent defined on one-dimensional subspace ( a , b ) are defined as
W s , p ( x , y ) ( ( a , b ) , R ) = { u L p ( x , y ) ( ( a , b ) , R | a b a b | u ( x ) u ( y ) | p ( x , y ) λ p ( x , y ) | x y | 1 + s p ( x , y ) d x d y < ,
for   some λ > 0 }
with the norm
u s , p ( x , y ) = inf { λ > 0 | a b a b | u ( x ) u ( y ) | p ( x , y ) λ p ( x , y ) | x y | 1 + + s p ( x , y ) d x d y 1 } .
when g ( t ) = | t | p ( x , y ) 2 t in (2), (2) reduced to the fractional p ( · ) Laplacian operator with variable exponent
( Δ ) p ( · ) s u i ( x ) = P.V. a b | u i ( x ) u i ( y ) | p ( x , y ) 2 ( u i ( x ) u i ( y ) ) | x y | 1 + s p ( x , y ) d y , x ( a , b ) .
Nonsingular p ( · ) Laplacian boundary value problems like the following
div | u | p ( x ) 2 u = λ f ( x , u ) ,
u = 0 Ω ,
we refer to [2,13,36,37,38,39,40,41,42,43,44,45,46]. In case of p Laplacian with p ( x ) = p a constant, we refer to [3,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63]. When 0 < s < 1 , g ( t ) = t in (2), (2) reduced to the usual fractional Laplacian operator ( Δ ) s . For the fractional Laplacian operator, see [45,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87].
We deal with the fractional Orlicz spaces with variable exponent, the fractional Orlicz-Sobolev spaces with variable exponent and their corresponding nonhomogeneous fractional N-Laplacian operators as the adequate function spaces. For the theory of Orlicz and Orlicz-Sobolev spaces and the fractional N-Laplacian operator, we also refer the readers to [1,10,60,88,89].
When s = 1 , g ( t ) = | t | p 2 t and Ω R n , (1) reduce to the p Laplacian problems. We [90] proved the existence of at least one solution for the p Laplacian boundary value problem with two singular and subcritical nonlinearities
div ( | u | p 2 u ) = a | u | p 2 u grad u 1 ( | u | 2 + | v | 2 ) q grad u 1 ( | u e 1 | 2 + | v e 2 | 2 ) r + 2 α α + β | u | α 1 | v | β in Ω , div ( | v | p 2 v ) = b | v | p 2 v grad v 1 ( | u | 2 + | v | 2 ) q grad v 1 ( | u e 1 | 2 + | v e 2 | 2 ) r + 2 β α + β | u | α | v | β 1 in Ω ,
where a, b, p, q, r, α and β are real constants, and 1 < p < , q , r > 1 and p < α + β < p * , where p * is critical exponent such that
p * = n p n p if n > p , if n p .
When s = 1 , g ( t ) = | t | p 2 t , n = 1 and Ω = ( a , b ) R 1 , (1) reduce to the one-dimensional p Laplacian problems. For the one-dimensional singular problems involving p Laplacian
( | u | p 2 u ) = m ( x ) u γ i n Ω ,
u > 0 i n Ω ,
u = 0 o n Ω ,
we refer to [24,30,91,92,93,94,95,96,97,98,99,100,101]. For the one-dimensional fractional p Laplacian problems, we refer to [102]. For the Kirchhoff equations involving fractional p Laplacian, we refer to [60,76,77,103,104,105].
Let G 1 be the function defined by
G 1 ( x ) = 0 x g 1 ( t ) d t for   all x 0 .
The function G 1 is called the complementary function of G and satisfies
G 1 ( x ) = sup { y x G ( y ) | y 0 } for   all x 0 .
G 1 satisfies that
lim x 0 G 1 ( x ) x = 0 , lim x G 1 ( x ) x = + ,
i.e., G 1 is an N-function. Moreover, by the Young’s inequality,
x y G ( x ) + G 1 ( y ) , for   all x , y 0 .
From now on we shall denote by C 1 ( S 1 , D ) the subset of C 1 ( [ a , b ] , D ) satisfying the conditions
u ( a ) = u ( b ) , u ( a ) = u ( b ) .
Orlicz space L G ( S 1 , R ) defined by N-function G is defined as
L G ( S 1 , R ) = { u | u : S 1 R is   a   measurable   function   with
u L G = sup { a b u v d x | a b G 1 ( | v | ) d x 1 } < } .
L G ( S 1 , R ) is a Banach space with a norm u L G equivalent to the Luxemburg norm
u G = inf { ν > 0 | a b G ( | u ( x ) ν | ) 1 } .
H o ¨ l d e r inequality holds in the Orlicz space L G ( S 1 , R ) (see [19]):
a b | u v | d x 2 u L G v L G 1 for   all u , v L G ( S 1 , R ) .
Orlicz-Sobolev space W s L G ( S 1 , R ) is defined as
W s L G ( S 1 , R ) = { u L G ( S 1 , R ) : a b a b G ( | u ( x ) u ( y ) | | x y | s ) d x d y | x y | < }
with the norm
u s , G = u G + [ u ] s , G ,
where [ u ] s , G is the Gagliardo semi-norm defined by
[ u ] s , G = inf { μ > 0 | a b a b G ( | u ( x ) u ( y ) | μ | x y | s ) d x d y | x y | 1 } .
In [88], for any 0 < s < 1 and G a Young function such that G and G 1 satisfy that
G ( 2 t ) C 1 G ( t ) and G 1 ( 2 t ) C 2 G 1 ( t ) , t 0 , C 1 , C 2 > 0 ,
W s L G ( S 1 , R ) is reflexive and separable. Moreover C 0 ( S 1 , R ) is dense in W s L G ( S 1 , R ) in the norm · s , G . Let the Orlicz-Sobolev space W 0 s L G ( S 1 , R ) be the closure of C 0 ( S 1 , R ) in W s L G ( S 1 , R ) . The space W 0 s L G ( S 1 , R ) is also reflexive. By Lemma 5.7 in [4], the norm u s , G is equivalent to [ u ] s , G .
Let
L G ( S 1 , R n ) = L G ( S 1 , R ) × × L G ( S 1 , R )
be the n cartesian product space of L G ( S 1 , R ) equipped with the norm
u L G ( S 1 , R n ) = i = 1 n u i L G ( S 1 , R ) , u = ( u 1 , , u n )
and
H = W s L G ( S 1 , R n ) = W s L G ( S 1 , R ) × × W s L G ( S 1 , R )
equipped with the norm
u H = i = 1 n u i s , G .
For any G a Young function such that G and G 1 satisfy ( 5 ) , W s L G ( S 1 , R n ) is reflexive and separable. Moreover C 0 ( S 1 , R n ) is dense in W s L G ( S 1 , R n ) in the norm · s , G . Let W 0 s L G ( S 1 , R n ) be the closure of C 0 ( S 1 , R n ) in W s L G ( S 1 , R n ) .
Zhikov [106] observed that smooth functions are not dense in W 1 , p ( x ) ( S 1 , R ) without additional assumptions on the exponent p ( x ) . However, when the exponent p ( x ) is log- H o ¨ l d e r continuous, i.e., there is a constant B such that
| p ( x ) p ( y ) | B log | x y |
for every x, y ( a , b ) with | x y | 1 2 , then smooth functions are dense in W 1 , p ( x ) ( S 1 , R ) . and there is no confusion in defining the Sobolev space with zero boundary values, W 0 1 , p ( x ) , as the completion of C 0 ( S 1 , R ) with respect to the norm u W 1 , p ( x ) ( S 1 , R ) [39,93].
Let us set
g 0 = inf t > 0 t g ( t ) G ( t ) g 0 = sup t > 0 t g ( t ) G ( t )
and assume that
1 < g 0 t g ( t ) G ( t ) g 0 < t 0 .
By Proposition 2.3 of [6], it implies that each G satisfies the Δ 2 condition, i.e., there exists a constant C > 0 such that
G ( 2 t ) C G ( t ) , t 0 .
Assume that G is a function such that
G : t [ 0 , ) G ( t ) is   convex .
Weak solutions u = ( u 1 , , u n ) W s L G ( S 1 , D ) satisfy
a b [ ( Δ ) g s u ( x ) · ϕ ( x ) d x + grad u ( α ( x ) | u ( x ) | p ( x ) ) · ϕ ( x ) + grad u ( m ( x ) 1 | u | γ ( x ) ) · ϕ ( x ) ] d x = 0
ϕ W s L G ( S 1 , D ) .
Theorem 1.
Let 0 < s < 1 , s g 0 < 1 , p C ( [ a , b ] , R ) with p ( x ) > 1 be log- H o ¨ l d e r continuous. Let α ( x ) , p ( x ) , m ( x ) , γ ( x ) C ( [ a , b ] , R ) be measurable functions with α ( x ) > 0 , 1 < p ( x ) < , m ( x ) > 0 and γ ( x ) > 1 . We assume that (5)–(7) and
1 < p ( x ) p + < g 0 * = g 0 1 s g 0
hold, where p + = sup x [ a , b ] p ( x ) and p = inf x [ a , b ] p ( x ) . Then (1) has at least one nontrivial weak solution.
Theorem 2.
Under the assumptions of Theorem 1, (1) has infinitely many weak solutions.
We use variational approach, minimax method in critical point theory on the loop space W s L G ( S 1 , D ) and homology theory. In Section 2, we introduce some preliminaries. In Section 3, we obtain some variational results on the potential and prove that the associated functional J of (1) satisfies the ( P . S . ) condition on the loop subspace W s L G ( S 1 , D ) . In Section 4, we prove Theorems 1 and 2 by using minimax method, critical point theory and homology theory.

2. Fractional Orlicz-Sobolev Space

For the variational setting, we need some properties on L p ( x ) ( S 1 , R ) , L p ( x ) ( S 1 , R n ) , L G ( S 1 , R ) , L G ( S 1 , R n ) , W s L G ( S 1 , R ) and W s L G ( S 1 , R n ) which are introduced in Section 1 and can be found in [107,108].
Lemma 1.
([107]) The space L p ( x ) ( S 1 , R ) is a separable, uniformly convex Banach space, and its conjugate space is L p ( x ) ( S 1 , R ) , where 1 p ( x ) + 1 p ( x ) = 1 . Let u L p ( x ) ( S 1 , R ) and v L p ( x ) ( S 1 , R ) . Then we have
| a b u v d x | 1 p + 1 ( p ) u L p ( x ) ( S 1 , R ) v L p ( x ) ( S 1 , R ) 2 u L p ( x ) ( S 1 , R ) v L p ( x ) ( S 1 , R ) .
Lemma 2.
Let p + < and set
τ ( u ) = a b | u | p ( x ) d x f o r   a l l u L p ( x ) ( S 1 , R ) .
Then
(i) 
τ ( u ) > 1 u L p ( x ) ( S 1 , R ) > 1 ,
τ ( u ) = 1 u L p ( x ) ( S 1 , R ) = 1 ,
τ ( u ) < 1 u L p ( x ) ( S 1 , R ) < 1 .
(ii) 
If u L p ( x ) ( S 1 , R ) > 1 , then u L p ( x ) ( S 1 , R ) p τ ( u ) u L p ( x ) ( S 1 , R ) p + .
(iii) 
If u L p ( x ) ( S 1 , R ) < 1 , then u L p ( x ) ( S 1 , R ) p + τ ( u ) u L p ( x ) ( S 1 , R ) p .
Lemma 3.
([88]) Let 0 < s < 1 and G be a N function. Then W s L G ( S 1 , R n ) is a reflexive and separable Banach space. Furthermore C 0 ( S 1 , R n ) is dense in W s L G ( S 1 , R n ) in the norm · s , G .
Let u i W s L G ( S 1 , R ) and set
[ u i ] s , G = inf { σ > 0 | a b a b G ( | u i ( x ) u i ( y ) | σ | x y | s ) d x d y | x y | 1 } , 1 i n .
Lemma 4.
([109]) (Generalized P o i n c a r inequality on the Orlicz-Sobolev space)
Let 0 < s < 1 and G be a Young function. Then
u i G ν i [ u i ] s , G , u i W s L G ( S 1 , R ) , 1 i n
for some constants ν i > 0 , 1 i n . That is, the embedding
W s L G ( S 1 , R ) L G ( S 1 , R )
is continuous. Furthermore [ u i ] s , G is a norm of W s L G ( S 1 , R ) equivalent to u i s , G .
Let u = ( u 1 , , u n ) W s L G ( S 1 , R n ) , u i W s L G ( S 1 , R ) and set
[ u ] s , G = i = 1 n [ u i ] s , G .
Combining Lemma 4 and (9), we obtain the following lemma:
Lemma 5.
(Generalized P o i n c a r inequality on the product of the Orlicz-Sobolev space)
Let 0 < s < 1 and G be a Young function. Then
u G ν [ u ] s , G , u W s L G ( S 1 , R n )
for some constant ν > 0 . That is, the embedding
W s L G ( S 1 , R n ) L G ( S 1 , R n )
is continuous. Moreover [ u ] s , G is a norm of W s L G ( S 1 , R n ) equivalent to · s , G .
Lemma 6.
([110]) Let u i W s L G ( S 1 , R ) . Then
u i s , G g 0 a b a b G ( | u i ( x ) u i ( y ) | | x y | s ) d x d y | x y | u i s , G g 0 , i f u i s , G > 1 , 1 i n , u i s , G g 0 a b a b G ( | u i ( x ) u i ( y ) | | x y | s ) d x d y | x y | u i s , G g 0 , i f u i s , G < 1 .
Proof. 
The proof follows from (6) and Theorem 3.11 of [110]. □
Let us define the functional Q s , G : W s L G ( S 1 , R n ) R by
Q s , G ( u ) = a b a b [ Σ i = 1 n G ( | u i ( x ) u i ( y ) | | x y | s ) ] d x d y | x y | ,
u = ( u 1 , , u n ) W s L G ( S 1 , R n ) , u i W s L G ( S 1 , R ) .
Combining Lemma 6 and (9), we obtain that:
Lemma 7.
Let u W s L G ( S 1 , R n ) . Then
u s , G g 0 Q s , G ( u ) u s , G g 0 , i f u s , G > 1 ,
u s , G g 0 Q s , G ( u ) u s , G g 0 , i f u s , G < 1 .
Lemma 8.
([109]) Let 0 < s < 1 , s g 0 < 1 and G be a N-function. Then the embeddings
W s , g 0 ( S 1 , R ) L r ( x ) ( S 1 , R )
and
W s L G ( S 1 , R ) L r ( x ) ( S 1 , R )
are continuous and compact for all 1 r ( x ) < g 0 * .
Moreover
u i L r ( x ) ( S 1 , R ) C i [ u i ] s , G f o r   a l l 1 r ( x ) < g 0 *
for some constants C i , 1 i n .
Proof. 
By [109], the embedding W s , g 0 ( S 1 , R ) L r ( x ) ( S 1 , R ) is continuous and compact for all 1 r ( x ) < g 0 * . By (6), the embedding W s L G ( S 1 , R ) W s , g 0 ( S 1 , R ) is continuous. Combining these facts, we obtain that the embedding W s L G ( S 1 , R ) L r ( x ) ( S 1 , R ) is continuous and compact for all 1 r ( x ) < g 0 * . □
Lemma 9.
Let 0 < s < 1 , s g 0 < 1 and G be a N-function. Then the embeddings
W s , g 0 ( S 1 , R n ) L r ( x ) ( S 1 , R n )
and
W s L G ( S 1 , R n ) L r ( x ) ( S 1 , R n )
are continuous and compact for all 1 r ( x ) < g 0 * .
Moreover
u L r ( x ) ( S 1 , R n ) C [ u ] s , G f o r   a l l 1 r ( x ) < g 0 * .
for some constant C > 0 .
Lemma 10.
Weakly convergent sequence { u k = ( u k 1 , , u k n ) } converging to u = ( u 1 , , u n ) in W s L G ( S 1 , R n ) satisfying
lim k + sup < Q s , G ( u k ) , u k u > 0 .
converges strongly to u in W s L G ( S 1 , R n ) .
Proof. 
Since the sequence { u k } converges weakly to u in W s L G ( S 1 , R n ) and
lim k + sup < Q ( u k ) , u k u > 0 , by (5), we have
a b a b [ Σ i = 1 n g ( | u k i ( x ) u k i ( y ) | | x y | s ) u k i ( x ) u k i ( y ) | u k i ( x ) u k i ( y ) | u k i ( x ) u k i ( y ) | x y | s ] d x d y | x y | a b a b [ Σ i = 1 n g ( | u i ( x ) u i ( y ) | | x y | s ) u i ( x ) u i ( y ) | u i ( x ) u i ( y ) | u i ( x ) u i ( y ) | x y | s ] d x d y | x y | g 0 [ a b a b [ Σ i = 1 n G ( | u i ( x ) u i ( y ) | | x y | s ) ] d x d y | x y | .
Sequence { a b a b [ Σ i = 1 n g ( | u k i ( x ) u k i ( y ) | | x y | s ) u k i ( x ) u k i ( y ) | u k i ( x ) u k i ( y ) | u k i ( x ) u k i ( y ) | x y | s ] d x d y | x y | } is bounded and converges to
a b a b [ Σ i = 1 n g ( | u i ( x ) u i ( y ) | | x y | s ) u i ( x ) u i ( y ) | u i ( x ) u i ( y ) | u i ( x ) u i ( y ) | x y | s ] d x d y | x y | . By (6), we have
a b a b [ Σ i = 1 n g ( | u k i ( x ) u k i ( y ) | | x y | s ) u k i ( x ) u k i ( y ) | u k i ( x ) u k i ( y ) | u k i ( x ) u k i ( y ) | x y | s ] d x d y | x y | g 0 [ a b a b [ Σ i = 1 n G ( | u k i ( x ) u k i ( y ) | | x y | s ) ] d x d y | x y | .
Sequence { a b a b [ Σ i = 1 n G ( | u k i ( x ) u k i ( y ) | | x y | s ) ] d x d y | x y | } is bounded and converges to
a b a b [ Σ i = 1 n G ( | u i ( x ) u i ( y ) | | x y | s ) ] d x d y | x y | . Thus the sequence { u k } is bounded and converges weakly to u in W s L G ( S 1 , R n ) . Since the embedding W s L G ( S 1 , R n ) L G ( S 1 , R n ) is continuous and compact, { u k } converges strongly to u in W s L G ( S 1 , R n ) . □
Lemma 11.
If u k = ( u k 1 , , u k n ) , u = ( u 1 , , u n ) W s L G ( S 1 , R n ) , k = 1 , 2 , , then the following statement are equivalent to each other
(i) lim k u k u s , G = 0 , k = 1 , 2 ,
(ii) lim k a b [ Σ i = 1 n ( G ( u k i ( x ) u i ( x ) ) ] d x = 0 and
lim k [ u k u ] s , G = 0 ,
(iii) u k u in measure in W s L G ( S 1 , R n ) and
lim k a b [ Σ i = 1 n G ( u k i ( x ) ) ] d x = a b [ Σ i = 1 n G ( u i ( x ) ) ] d x .
Proof. 
By the definition of · s , G , (i)⇔(ii) holds. We shall show that (i) implies (iii). We assume that (i) holds. Then
a b [ ( Σ i = 1 n G ( u k i ) ( x ) ) ( Σ i = 1 n G ( u i ) ( x ) ) ] d x a b [ Σ i = 1 n ( g ( u i + λ ( u k i u i ) ) ( u k i u i ) ) ] d x 2 [ Σ i = 1 n ( g ( u i + λ ( u k i u i ) ) G 1 u k i u i G ) ] C ( Σ i = 1 n ( g ( u i + λ ( u k i u i ) ) G 1 u k i u i s , G ) ) 0
for 0 < λ < 1 and some C > 0 . It follows that (iii) holds. Assume that (iii) holds. Since
lim k a b [ Σ i = 1 n G ( u k i ( x ) ) ] d x = a b [ Σ i = 1 n G ( u i ( x ) ) ] d x , { u k } converges weakly to u in L G ( S 1 , R n ) . By assumption (iii), u k u in measure in W s L G ( S 1 , R n ) . It follows that { u k } is bounded in W s L G ( S 1 , R n ) L G ( S 1 , R n ) . By Lemma 9, the embedding W s L G ( S 1 , R n ) L G ( S 1 , R n ) is continuous and compact. Thus u k u strongly in W s L G ( S 1 , R n ) . Thus (i) holds. □

3. Variational Results

Let us set an open set of the Hilbert space W s L G ( S 1 , R n ) as
Λ s , G D = { u W s L G ( S 1 , R n ) | a b a b [ Σ i = 1 n G ( | u i ( x ) u i ( y ) | | x y | s ) ] d x d y | x y | < ,
u ( x ) = ( u 1 ( x ) , , u n ( x ) ) D = R n \ C R n , x S 1 , θ C , θ = ( 0 , , 0 ) }
the loop space on D. We note that grad u ( m ( x ) | u ( x ) | γ ( x ) ) is not singular on W s L G ( S 1 , D ) because D is away from 0.
Let us define the functional J s , G : Λ D W s L G ( S 1 , R n ) R by
J s , G ( u ) = Q s , G ( u ) + a b α ( x ) | u ( x ) | p ( x ) d x + a b m ( x ) 1 | u | γ ( x ) d x ,
where
Q s , G ( u ) = a b a b [ Σ i = 1 n G ( | u i ( x ) u 1 ( y ) | | x y | s ) ] d x d y | x y |
for u = ( u 1 , , u n ) Λ D . Then the functional Q s , G is of class C 1 ( W s L G ( S 1 , R n ) , R ) with
< Q s , G ( u ) , v > = < ( Δ ) g s u , v > = a b a b [ Σ i = 1 n g ( | u i ( x ) u i ( y ) | | x y | s ) u i ( x ) u i ( y ) | u i ( x ) u i ( y ) | v i ( x ) v i ( y ) | x y | s ] d x d y | x y |
u = ( u 1 , , u n ) Λ D , which is proved in Proposition 3.3 in [89].
Lemma 12.
J s , G ( u ) is continuous and C 1 on Λ s , G D with F r c h e t derivative
D J s , G ( u ) v = a b a b [ Σ i = 1 n g ( | u i ( x ) u i ( y ) | | x y | s ) u i ( x ) u i ( y ) | u i ( x ) u i ( y ) | v i ( x ) v i ( y ) | x y | s ] d x d y | x y | + a b [ ( g r a d u α ( x ) | u ( x ) | p ( x ) ) ) · v ( x ) + ( g r a d u ( m ( x ) | u ( x ) | γ ( x ) ) · v ( x ) ] d x ,
v = ( v 1 , , v n ) Λ s , G D . Moreover D J s , G C . That is, J s , G C 1 .
Proof. 
By Proposition 3.3 in [89],
Q s , G ( u ) = a b a b [ Σ i = 1 n G ( | u i ( x ) u i ( y ) | | x y | s ) ] d x d y | x y |
is C 1 with F r c h e t derivative
< Q s , G ( u ) , v > = < ( Δ ) g s u , v > = a b a b [ Σ i = 1 n g ( | u i ( x ) u i ( y ) | | x y | s ) u i ( x ) u i ( y ) | u i ( x ) u i ( y ) | v i ( x ) v i ( y ) | x y | s ] d x d y | x y | .
It suffices to show that a b α ( x ) | u ( x ) | p ( x ) d x + a b m ( x ) | u ( x ) | γ ( x ) d x is C 1 with F r c h e t derivative a b ( grad u α ( x ) | u ( x ) | p ( x ) ) · v ( x ) + a b ( grad u ( m ( x ) | u ( x ) | γ ( x ) ) · v ( x ) d x v Λ s , G D . Let us set
Ψ ( u ) = Ψ 1 ( u ) + Ψ 2 ( u ) ,
where
Ψ 1 ( u ) = a b α ( x ) | u ( x ) | p ( x ) d x , Ψ 2 ( u ) = a b m ( x ) | u ( x ) | γ ( x ) d x .
We shall prove that Ψ ( u ) is continuous. For v , w Λ s , G D , we have
| Ψ 1 ( v + w ) Ψ 1 ( v ) | | α ( x ) | | a b [ ( grad v | v ( x ) + τ 1 w ( x ) | p ( x ) ) · w ( x ) + O ( w H ) ] d x | = O ( w H )
for some 0 < τ 1 < 1 . and
| Ψ 2 ( v + w ) Ψ 2 ( v ) | | m ( x ) | | a b [ ( grad v 1 | v ( x ) + τ 2 w ( x ) | γ ( x ) ) · w ( x ) + O ( w H ) ] d x | = O ( w H )
for some 0 < τ 2 < 1 . Thus we have
| Ψ ( v + w ) Ψ ( v ) | | Ψ 1 ( v + w ) Ψ 1 ( v ) | + | Ψ 2 ( v + w ) Ψ 2 ( v ) | = O ( w H ) . Next we shall prove that Ψ ( u ) is C 1 in Λ s , G D . Let v , w Λ s , G D . By (14) and (15), we have
| Ψ 1 ( v + w ) Ψ 1 ( v ) D Ψ 1 ( v + τ 1 w ) · w | = 0 ( w H ) .
for some τ 1 > 0 and
| Ψ 1 ( v + w ) Ψ 2 ( v ) D Ψ 1 ( v + τ 2 w ) · w | = 0 ( w H ) .
for some τ 2 > 0 . Thus Ψ ( u ) is C 1 . □
Now we shall investigate the boundary behaviour of J s , G
Lemma 13.
Let { u k = ( u k 1 , , u k n ) } Λ s , G D and u k u weakly in Λ s , G D with u = ( u 1 , u n ) Λ s , G D . Then J ( u k ) + .
Proof. 
Since a b a b [ Σ i = 1 n G ( | u k i ( x ) u k i ( y ) | | x y | s ) ] d x d y | x y | + a b α ( x ) | u k ( x ) | p ( x ) d x > 0 , it suffices to show that
a b m ( x ) | u k ( x ) | γ ( x ) d x + .
Since m ( x ) | u k ( x ) | γ ( x ) > 0 ,
a 0 b 0 m ( x ) | u k ( x ) | γ ( x ) d x + .
for some subinterval ( a 0 , b 0 ) of ( a , b ) . Since u Λ s , G D , there exists x 0 ( a , b ) and a neighbourhood N ϵ ( x 0 ) = { x ( a , b ) | | x x 0 | < ϵ } of x 0 such that u ( x 0 ) D and for any x N ϵ ( x 0 ) ,
m ( x ) | u ( x ) | γ ( x ) c 1 | u ( x ) u ( x 0 ) | c 2
for some c 1 > 0 and c 2 > 0 . Thus we have
N ϵ ( x 0 ) m ( x ) | u ( x ) | γ ( x ) d x N ϵ ( x 0 ) [ c 1 | u ( x ) u ( x 0 ) | c 2 ] d x
ϵ > 0 . Thus
| u ( x ) u ( x 0 ) | u ( x ) W s L G ( S 1 , R n ) | x x 0 | b a | x x 0 | b a a b a b [ Σ i = 1 n G ( | u i ( x ) u i ( y ) | | x y | s ) ] d x d y | x y | ] 1 g 0 < ϵ a b a b [ Σ i = 1 n G ( | u i ( x ) u i ( y ) | | x y | s ) ] d x d y | x y | ] 1 g 0 .
From (17) and (18),
N ϵ ( x 0 ) m ( x ) | u ( x ) | γ ( x ) d x N ϵ ( x 0 ) [ c 1 ϵ a b a b [ Σ i = 1 n G ( | u i ( x ) u i ( y ) | | x y | s ) ] d x d y | x y | ] 1 g 0 c 2 ] d x .
Then we have
N ϵ ( x 0 ) m ( x ) | u ( x ) | γ ( x ) d x .
 □
Now, we shall prove that J s , G ( u ) satisfies ( P . S . ) τ s , G condition for any τ s , G > τ s , G 0 in Λ s , G D .
Lemma 14.
Let ( u k ) k be a sequence such that J s , G ( u k ) τ s , G and D J s , G ( u k ) θ for some τ s , G > 0 . Then if u k H , then J s , G ( u k ) τ s , G 0 in Λ s , G D for some constant τ s , G 0 > 0 .
Proof. 
Let u k = ( u k 1 , , u k n ) Λ s , G D H . Assume that u k H . Since D J s , G ( u k ) = ( Δ ) g s u k + grad u ( α ( x ) | u k ( x ) | p ( x ) ) + grad u ( m ( x ) 1 | u k | γ ( x ) ) θ , we have, for u k Λ s , G D ,
u H D J s , G ( u k ) · u k = a b ( Δ ) g s u k · u k ( x ) d x + a b ( grad u ( α ( x ) | u k ( x ) | p ( x ) ) ) · u k ( x ) d x + a b ( grad u ( m ( x ) 1 | u k | γ ( x ) ) ) · u k ( x ) d x .
By (6), we have
D J s , G ( u k ) · u k = a b a b [ Σ i = 1 n g ( | u k i ( x ) u k i ( y ) | | x y | s ) u k i ( x ) u k i ( y ) | u k i ( x ) u k i ( y ) | u k i ( x ) u k i ( y ) | x y | s ] d x d y | x y | + a b [ ( grad u ( α ( x ) | u k ( x ) | p ( x ) ) ) · u k ( x ) + ( grad u ( m ( x ) 1 | u k | γ ( x ) ) ) · u k ( x ) ] d x g 0 [ a b a b [ Σ i = 1 n G ( | u k i ( x ) u k i ( y ) | | x y | s ) ] d x d y | x y | + a b ( grad u ( α ( x ) | u k ( x ) | p ( x ) ) ) · u k ( x ) d x + a b ( grad u ( m ( x ) 1 | u k | γ ( x ) ) ) · u k ( x ) d x .
for large k. By Lemma 7, (20) becomes that
u k H D J s , G ( u k ) · u k g 0 [ a b a b [ Σ i = 1 n G ( | u k i ( x ) u k i ( y ) | | x y | s ) ] d x d y | x y | + a b ( grad u ( α ( x ) | u k ( x ) | p ( x ) ) ) · u k ( x ) d x + a b ( grad u ( m ( x ) 1 | u k | γ ( x ) ) ) · u k ( x ) d x g 0 u k H g 0 + a b ( grad u ( α ( x ) | u k ( x ) | p ( x ) ) ) · u k ( x ) d x + a b ( grad u ( m ( x ) 1 | u k | γ ( x ) ) ) · u k ( x ) d x
and
u k H g 0 u k H g 0 + a b ( grad u ( α ( x ) | u k ( x ) | p ( x ) ) ) · u k ( x ) d x + a b ( grad u ( m ( x ) 1 | u k | γ ( x ) ) ) · u k ( x ) d x .
By (22) and H o ¨ l d e r inequality in Λ s , G D W s L G ( S 1 , R n ) , we have
g 0 u k H g 0 u k H a b ( grad u ( α ( x ) | u k ( x ) | p ( x ) ) ) · u k ( x ) d x a b ( grad u ( m ( x ) 1 | u k | γ ( x ) ) ) · u k ( x ) d x 2 grad u ( α ( x ) | u k ( x ) | p ( x ) ) L G * u k L G + 2 grad u ( m ( x ) 1 | u k | γ ( x ) ) L G * u k L G 2 grad u ( α ( x ) | u k ( x ) | p ( x ) ) L G * u k H + 2 grad u ( m ( x ) 1 | u k | γ ( x ) ) L G * u k H .
From (23),
g 0 u k H g 0 1 1 + 2 grad u ( α ( x ) | u k ( x ) | p ( x ) ) L G * + 2 g r a d u ( m ( x ) 1 | u k | γ ( x ) ) L G * .
u k H implies that there exists a constant R 0 > 0 such that u k H R 0 for large k. Thus we have
a b m ( x ) | u k | γ ( x ) ( b a ) | m ( x ) | sup { 1 | u k | γ ( x ) | x ( a , b ) , u k H \ B R 0 } .
By Lemma 9, the embedding
W s L G ( S 1 , R n ) L r ( x ) ( S 1 , R n )
is continuous and compact for all 1 r ( x ) < g 0 * . Since p ( x ) < g 0 * , there exists a positive constant C such that
u k L p ( x ) C u k H .
By (24)–(26), we have
J s , G ( u k ) = a b a b [ Σ i = 1 n G ( | u k i ( x ) u k i ( y ) | | x y | s ) ] d x d y | x y | + a b α ( x ) | u k ( x ) | p ( x ) d x + a b m ( x ) 1 | u k | γ ( x ) d x u k g 0 + | α ( x ) | u k ( x ) L p ( x ) ( a , b ) , R n p ( x ) + ( b a ) | m ( x ) | sup { 1 | u k ( x ) | γ ( x ) } u k g 0 + C | α ( x ) | u k ( x ) H p ( x ) + ( b a ) | m ( x ) | sup { 1 | u k ( x ) | γ ( x ) } [ 1 g 0 ( 1 + 2 grad u ( α ( x ) | u k ( x ) | p ( x ) ) L G * + 2 grad u ( m ( x ) 1 | u k | γ ( x ) L G * ) ] g 0 g 0 1 + C | α ( x ) | ( [ 1 g 0 ( 1 + 2 grad u ( α ( x ) | u k ( x ) | p ( x ) ) L G * + 2 grad u ( m ( x ) 1 | u k | γ ( x ) L G * ) ] p + g 0 1 ) + ( b a ) | m ( x ) | sup { 1 | u k ( x ) | γ ( x ) } .
If we set,
τ s , G 0 = [ 1 g 0 ( 1 + 2 grad u ( α ( x ) | u k ( x ) | p ( x ) ) L G * + 2 grad u ( m ( x ) 1 | u k | γ ( x ) ) L G * ] g 0 g 0 1 + C | α ( x ) | ( [ 1 g 0 ( 1 + 2 grad u ( α ( x ) | u k ( x ) | p ( x ) ) L G * + 2 grad u ( m ( x ) 1 | u k | γ ( x ) ) L G * ] p + g 0 1 ) + ( b a ) | m ( x ) | s u p { 1 | u k ( x ) | γ ( x ) } ,
we have J s , G ( u k ) τ s , G 0 . □
Lemma 15.
J s , G ( u ) satisfies the ( P . S . ) τ s , G condition for any τ s , G > τ s , G 0 in Λ s , G D .
Proof. 
Let τ s , G > 0 and ( u k ) k Λ s , G D be a sequence such that J s , G ( u k ) τ s , G and D J s , G ( u k ) θ , θ = ( 0 , , 0 ) in Λ s , G D . First we shall show that { u k } is bounded in Λ s , G D . Suppose that u k H as k . By Lemma 14, J s , G ( u k ) τ s , G 0 , where τ s , G 0 is introduced in the proof of Lemma 14. This leads to a contradiction because J s , G ( u k ) τ s , G > τ s , G 0 . Thus { u k } is bounded in Λ s , G D . Up to a subsequence, { u k } converges weakly to some u Λ s , G D . We claim that { u k } converges strongly to u Λ s , G D . Since D J s , G ( u k ) θ , we have
u k ( x ) + ( ( Δ ) g s ) 1 ( grad u ( α ( x ) | u k ( x ) | p ( x ) ) + grad u ( m ( x ) 1 | u k | γ ( x ) ) ) θ
and we also have
D J s , G ( u k ( x ) ) · u k ( x ) = ( Δ ) g s u k ( x ) · u k ( x ) + ( grad u ( α ( x ) | u k ( x ) | p ( x ) ) ) · u k ( x )
+ ( grad u ( m ( x ) 1 | u k | γ ( x ) ) ) · u k ( x ) 0 .
The second and third part of the right-hand side of (28) satisfy
a b [ grad u ( α ( x ) | u k ( x ) | p ( x ) · u k ( x ) ] d x p + | α ( x ) | u k ( x ) L p ( x ) ( S 1 , R n ) p +
and
a b ( grad u ( m ( x ) 1 | u k | γ ( x ) ) · u k d x | m ( x ) | γ + a b 1 | u k ( x ) | γ ( x ) d x .
Continuous and compact embedding W s L G ( S 1 , R n ) L p ( x ) ( S 1 , R n ) for 1 < p ( x ) < g 0 * implies that u k L p ( x ) ( S 1 , R n ) C u k H for some constant C > 0 . Thus if { u k } is bounded in Λ s , G D W s L G ( S 1 , R n ) , then { u k } is bounded in L p ( x ) ( S 1 , R n ) . It follows that a b [ grad u ( α ( x ) | u k ( x ) | p ( x ) · u k ( x ) ] d x and a b ( grad u ( m ( x ) 1 | u k | γ ( x ) ) · u k d x are bounded in L p ( x ) ( S 1 , R n ) . By (28), ( Δ ) g s u k ( x ) · u k ( x ) is bounded. Since { u k } is bounded in Λ s , G D ,
( Δ ) g s u k ( x ) is   bounded   in L p ( x ) ( S 1 , R n ) .
Lemma 9 leads that { u k } converges to u strongly in Λ s , G D . □

4. Proofs of Theorems 1 and 2

Let us set the level set
J s , G τ s , G = { u Λ s , G D | J s , G ( u ) τ s , G } .
Lemma 16.
H b i ( Λ s , G D ) 0 for some strictly increasing sequence b i .
Proof. 
Let C ¯ ϵ ( θ ) be a neighbourhood θ with radius ϵ > 0 and choose R > 0 such that C ¯ ϵ ( θ ) int ( B R ( θ ) ) . Then we have
R n \ B R ( θ ) ( R n \ { θ } )
and R n \ B R ( θ ) is a deformation retract of R n \ { θ } . Then Λ s , G ( R n \ B R ( θ ) ) is a deformation retract of Λ s , G D . Thus we have
H * ( Λ s , G D ) H * ( Λ s , G ( R n \ B R ( θ ) ) ) H * ( Λ s , G D , Λ s , G ( R n \ B R ( θ ) ) )
H * ( Λ s , G ( S n 1 ) H * ( Λ s , G D , Λ s , G ( S n 1 ) ) .
In [111], the P o i n c a r series of Λ s , G ( S n 1 ) is written as
P t ( Λ s , G ( S n 1 ) ) = ( 1 + t n ) + t n 1 1 t 2 ( n 1 ) ( 1 + t n ) ( 1 + t n 1 ) .
 □
Lemma 17.
The level set J s , G τ s , G is deformed into Σ s , G for some finite dimensional singular complex Σ s , G = Σ τ s , G .
Proof. 
Let u J s , G τ s , G . Then u = ( u 1 , , u n ) Λ s , G D and
J s , G ( u ) = a b a b [ Σ i = 1 n G ( | u i ( x ) u i ( y ) | | x y | s ) ] d x d y | x y |
+ a b α ( x ) | u ( x ) | p ( x ) d x + a b m ( x ) 1 | u | γ ( x ) d x τ s , G .
If ( x , u ( x ) ) [ a , b ] × ( R n \ B R 0 ( θ ) ) , then
0 < m ( x ) | u ( x ) | γ ( x ) < + , and | grad u ( m ( x ) | u ( x ) | γ ( x ) ) | < +
for some constant R 0 > 0 . We also note that if u ( x ) B R 0 \ C ¯ ϵ ( θ ) , then
( b a ) inf { α ( x ) } ϵ p + ( b a ) inf { m ( x ) } R 0 γ + < a b α ( x ) | u ( x ) | p ( x ) d x + a b m ( x ) | u ( x ) | γ ( x ) d x < τ s , G .
(29)–(31) imply that
a b a b [ Σ i = 1 n G ( | u i ( x ) u i ( y ) | | x y | s ] d x d y | x y | < τ s , G 1
for some constant τ s , G 1 > 0 . By Lemma 13, there exists ϵ s , G 0 = ϵ s , G ( τ s , G , τ s , G 1 ) such that
d ( u , C ¯ ϵ s , G ( θ ) ) ϵ s , G 0 u J s , G τ s , G , x [ a , b ] .
Let us choose an integer N s , G = N τ s , G 1 > ( τ s , G 1 ) 1 g 0 ϵ s , G 0 and set
x s , G i = ( b a ) i N s , G i = 1 , 2 , , N s , G
and
u ¯ s , G ( x ) = ( 1 1 b a N s , G ( x x s , G i 1 ) ) u ( x s , G i 1 ) + 1 b a N s , G ( x x s . G i 1 ) u ( x s , G i )
x [ x s , G i 1 , x s , G i ] , i = 1 , 2 , , N s , G , u J s , G τ s , G . Let
Σ s , G = { u ¯ s , G ( x ) | u J s , G τ s , G } .
Mapping D × D × × N s , G D u ¯ s , G ( u ( x s , G 1 ) , u ( x s , G 2 ) , , u ( x s , G N s , G ) ) is a homeomorphism. We shall show that Σ s , G Λ s , G D . In fact, for u J s , G τ s , G and x s , G i > x s , G i 1 , by (32), we have
| u ( x s , G i ) u ( x s , G i 1 ) | u ¯ s , G ( x ) W s L G ( S 1 , R n ) | x s , G i x s , G i 1 | b a | x s , G i x s , G i 1 | b a a b a b [ Σ i = 1 n G ( | u i ( x ) u i ( y ) | | x y | s ) ] d x d y | x y | ] 1 g 0 < ϵ s , G b a ( τ s , G 1 ) 1 g 0 .
Thus
d ( u ¯ s , G ( x ) , C ¯ ϵ s , G ( θ ) ) d ( u ( x s , G i ) , C ¯ ϵ s , G ( θ ) ) 1 1 b a N s , G ( x x s , G i 1 ) | u ( x s , G i ) u ( x s , G i 1 ) | ϵ s , G 0 ( N s , G ) 1 ( τ s , G 1 ) 1 g 0 > 0
x [ x s , G i 1 , x s , G i ] . We shall show that there exists η s , G C ( [ 0 , 1 ] × J s , G τ s , G , Λ s , G D ) such that η s , G ( 0 , · ) = id , and η s , G ( 1 , J s , G τ s , G ) = Σ s , G . In fact, Let us choose u ( x ) Λ s , G D and let us define η s , G as follows:
η s , G ( y , u ) ( x ) = u ( x ) for x ( b a ) y , ( 1 x x s , G i 1 ( b a ) y x s , G i 1 ) u ( x s , G i 1 ) + x x s , G i 1 ( b a ) y x s , G i 1 u ( ( b a ) y ) for x s , G i 1 < x < ( b a ) y , u ¯ s , G ( x ) for x x s , G i 1 .
Then η s , G ( 0 , · ) = id , and η s , G ( 1 , J s , G τ s , G ) = Σ s , G . Thus we prove that J s , G τ s , G is deformed into Σ s , G in the loop space Λ s , G D . □
Proof of Theorem 1.
We claim that for each q > n N s , G , where N s , G = N s , G τ s , G 0 is defined in Lemma 17, let us set
τ s , G = inf z β max u [ z ] J s , G ( u ) ,
where β H q ( Λ s , G D ) is nontrivial. We claim that τ s , G > τ s , G 0 and τ s , G is a critical value of J s , G . In fact, suppose that τ s , G τ s , G 0 and τ s , G is not a critical value of J s , G . Then [ u ] J s , G τ s , G 0 + 1 for some [ u ] β . By Lemma 17, there exists a deformation η s , G : [ 0 , 1 ] × J s , G τ s , G 0 + 1 Λ s , G D such that η s , G ( 1 , J s , G τ s , G 0 + 1 ) Σ s , G τ s , G 0 + 1 with dim Σ s , G τ s , G 0 + 1 n N s , G τ s , G 0 . This implies that η s , G ( 1 , [ u ] ) Σ s , G τ s , G 0 + 1 . However, η s , G ( 1 , [ u ] ) β and β H q ( Λ s , G D ) with q > n N s , G τ s , G 0 , which is absurd. □
Proof of Theorem 2.
We suppose that J s , G ( u ) has only finitely many critical points u 1 , u 2 , , u m s , G such that we can obtain J s , G ( u k ) > τ s , G 0 , 1 k m s , G . Let us set
K = { u 1 , u 2 , , u m s , G } .
We note that dim ker ( D 2 J s , G ( u k ) ) 2 n , for all k. Letting
b s , G * > max { n N s , G τ s , G 0 , ind ( J s , G , u k ) + dim   ker ( D 2 J s , G ( u k ) ) | 1 k m s , G } .
and
d s , G > max { τ s , G 0 , J s , G ( u k ) | 1 k m s , G } ,
we have
C b ( J s , G , u k ) = 0 b s , G b s , G * , k = 1 , 2 , , m s , G
and
H * ( Λ s , G D , J s , G τ s , G 0 ) = H * ( J s , G d s , G , J s , G τ s , G 0 ) .
Hence
H b ( Λ s , G D , J s , G τ s , G 0 ) = 0 b s , G > b s , G * .
Since
i * : H b ( Λ s , G D ) H b ( Λ s , G D , J s , G τ s , G 0 ) is   injective   for b s , G b s , G *
we have
H b ( Λ s , G D ) = 0 for b s , G b s , G * ,
which is absurd. □

Author Contributions

Q.-H.C. introduced the main ideas of multiplicity study for this problem. T.J. participate in applying the method for solving this problem and drafted the manuscript. All authors contributed equally to read and approved the final manuscript.

Funding

Q.-H.C. was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (NRF-2017R1D1A1B03030024). T.J. was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2017R1A2B4005883).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Applebaum, D. Lévy processes-From Probability to Finance and Quantum Groups, Notices. AMS 2004, 51, 1336–1347. [Google Scholar]
  2. Chen, Y.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 2006, 66, 1383–1406. [Google Scholar] [CrossRef] [Green Version]
  3. Cont, R.; Tankov, P. Financial Modelling with Jump Processes; Financial Mathematics Series; Chapman and Hall/CRC: Boca Raton, FL, USA, 2004; Volume 2. [Google Scholar]
  4. Gossez, J.P. Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Am. Math. Soc. 1974, 190, 163–205. [Google Scholar] [CrossRef]
  5. Hsini, M.; Irzi, N.; Kefi, K. On a fractional problem with variable exponent. Proc. Rom. Acad. Ser. Math. Phys. Tech. Sci. Inf. Sci. 2019, 71, 223–237. [Google Scholar]
  6. Mihailescu, M.; Radulescu, V. Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces. Ann. Inst. Fourier 2008, 58, 2087–2111. [Google Scholar] [CrossRef] [Green Version]
  7. Musielak, J. Orlicz Spaces and Modular Spaces; Springer: Berlin, Germany, 1983. [Google Scholar]
  8. Pezzo, L.M.; Rossi, J.D. Trace for fractional Sobolev spaces with variables exponents. arXiv 2017, arXiv:1704.02599. [Google Scholar]
  9. Rao, M.M.; Ren, Z.D. Theory of Orlicz Spaces; Marcel Dekker, Inc.: New York, NY, USA, 1991. [Google Scholar]
  10. Ruzicka, M. Electrorheological Fluids: Modeling and mathematical theory. In Lecture Notes in Mathematics; Springer: Berlin, Germany, 2002; Volume 1748. [Google Scholar]
  11. Samorodnitsky, G.; Taqqu, M.S. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance; Chapman and Hall: New York, NY, USA, 1994; Volume 2. [Google Scholar]
  12. Zhang, C.; Zhang, X. Renormalized solutions for the fractional p(x)-Laplacian equation with L1 data. arXiv 2017, arXiv:1708.04481v1. [Google Scholar] [CrossRef]
  13. Zhang, Q. Existence of solutions for p(x)–Laplacian equations with singular coefficients in RN. Math. Anal. Appl. 2008, 348, 38–50. [Google Scholar] [CrossRef] [Green Version]
  14. Zhikov, V.V. Averaging of functionals of the calculus of variations and elasticity theory. SSSR Ser. Mat. 1986, 50, 675–710. [Google Scholar] [CrossRef]
  15. Bandle, C. Asymptotic behavior of large solutions of quasilinear elliptic problems. Z. Angew. Math. Phys. 2003, 54, 731–738. [Google Scholar] [CrossRef] [Green Version]
  16. Bandle, C.; Essen, M. On the solutions of quasilinear elliptic problems with boundary blow-up, in partial differential equations of elliptic type (Cortona, 1992). Sympos. Math. 1994, 35, 93–111. [Google Scholar]
  17. Bandle, C.; Marcus, M. ‘Large’ solutions of semilinear elliptic equations: Existence, uniqueness, and asymptotic behavior. J. Anal. Math. 1992, 58, 9–24. [Google Scholar] [CrossRef]
  18. Bandle, C.; Marcus, M. Dependence of blowup rate of large solutions of semilinear elliptic equations on the curvature of the boundary. Complex Var. Theory Appl. 2004, 49, 555–570. [Google Scholar] [CrossRef]
  19. Du, Y.; Huang, Q. Blow-up solutions for a class of semilinear elliptic and parabolic equations. SIAM J. Math. Anal. 1999, 31, 1–18. [Google Scholar] [CrossRef]
  20. Dunninger, D.R.; Wang, H. It Multiplicity of positive radial solutions for an elliptic system on an annlus domain. Nonlinear Anal. TMA 2000, 42, 5. [Google Scholar] [CrossRef]
  21. Dupaigne, L.; Ghergu, M.; Radulescu, V. Lane-Emden-Fowler equations with convection and singular potential. J. Math. Pures Appl. 2007, 87, 563–581. [Google Scholar] [CrossRef] [Green Version]
  22. Fulks, W.; Maybee, J.S. A singular nonlinear equation. Osaka Math. J. 1960, 12, 1–19. [Google Scholar]
  23. Garcia-Melián, J.; Letelier-Albornoz, R.; de Lis, J.S. Uniqueness and asymptotic behavior for solutions of semilinear problems with boundary blow-up. Proc. Am. Math. Soc. 2001, 129, 3593–3602. [Google Scholar] [CrossRef]
  24. Ghergu, M.; Rádulescu, V. Singular Elliptic Problems, Bifurcation and Asymptotic Analysis; Oxford Lecture Series in Mathematics and Its Applications; Oxford University Press: Oxford, UK, 2008; Volume 37. [Google Scholar]
  25. Lazer, A.C.; McKenna, P.J. Asymptotic behavior of solutions of boundary blowup problems. Differ. Integral Equ. 1994, 7, 1001–1019. [Google Scholar]
  26. Lazer, A.C.; McKenna, P.J. On a problem of Bieberbach and Rademacher. Nonlinear Anal. 1993, 21, 327–335. [Google Scholar] [CrossRef]
  27. Loewner, C.; Nirenberg, L. Partial differential equations invariant under conformal or projective transformations. In Contribution to Analysis; Academic Press: New York, NY, USA, 1974; pp. 245–272. [Google Scholar]
  28. Marcus, M.; Véron, L. Existence and uniqueness results for large solutions of general nonlinear elliptic equations. J. Evol. Equ. 2003, 3, 637–652. [Google Scholar] [CrossRef]
  29. Marcus, M.; Véron, L. Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations. Ann. Inst. Anal. Nonlinéaire 1997, 14, 237–274. [Google Scholar] [CrossRef] [Green Version]
  30. O’Regan, D. Some general existence principles and results for (ϕ(y′))′ = qf(t,y,y′), 0<t < 1. SIAM J. Math. Anal. 1993, 24, 648–668. [Google Scholar]
  31. Rademacher, H. Einige besondere Probleme der partiellen Differentialgleichungen. In Die Differential and Integralgleichungen der Mechanik and Physik I, 2nd ed.; Frank, P., von Mises, R., Eds.; Rosenberg: New York, NY, USA, 1943; pp. 838–845. [Google Scholar]
  32. Radulescu, V. Singular phenomena in nonlinear elliptic problems, From blow-up boundary solutions to equations with singular nonlinearities. In Handbook of Differential Equations: Stationary Partial Differential Equations; North-Holland Elsevier Science: Amsterdam, The Netherlands, 2007; Volume 4, pp. 483–591. [Google Scholar]
  33. Ratto, A.; Rigoli, M.; Véron, L. Scalar curvature and conformal deformation of hyperbolic space. J. Funct. Anal. 1994, 121, 15–77. [Google Scholar] [CrossRef]
  34. Shi, J.; Yao, M. On a singular nonlinear semilinear elliptic problem. Proc. R. Soc. Edinburgh. Sect. A 1998, 128, 1389–1401. [Google Scholar] [CrossRef] [Green Version]
  35. Trabelsi, M.; Trabelsi, N. Singular limit solutions for a 2-dimensional semilinear elliptic system of Liouville type. Adv. Nonlinear Anal. 2016, 5, 315–329. [Google Scholar] [CrossRef]
  36. Alves, C.O.; Ferreira, M.C. Existence of solutions for a class of p(x)–Laplacian equations involving a concave-convex nonlinearity with critical growth in RN. Topol. Methods Nonlinear Anal. 2015, 45, 399–422. [Google Scholar] [CrossRef]
  37. Amrouss, A.R.E.; Kissi, F. Multiplicity of solutions for a general p(x)–Laplacian Dirichlet problem. Arab. J. Math. Sci. 2013, 19, 205–216. [Google Scholar] [CrossRef] [Green Version]
  38. Benouhiba, N. Nonlocal eigenvalue problems in variable exponent Sobolev spaces. J. Nonlinear Funct. Anal. 2015, 2015, 1–15. [Google Scholar]
  39. Diening, L. Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and Wk,p(·). Math. Nachr. 2004, 268, 31–43. [Google Scholar] [CrossRef]
  40. Diening, L.; Harjulehto, P.; Hasto, P.; Ruzicka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Springer: Heidelberg, Germany, 2011. [Google Scholar]
  41. Lê, A. Eigenvalue Problems for the p–Laplacian. Nonlinear Anal. 2006, 64, 1057–1099. [Google Scholar] [CrossRef]
  42. Mihailescu, M.; Pucci, P.; Radulescu, V. Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. 2008, 340, 687–698. [Google Scholar] [CrossRef] [Green Version]
  43. Mihailescu, M.; Radulescu, V. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2006, 462, 2625–2641. [Google Scholar] [CrossRef] [Green Version]
  44. Rajagopal, K.; Ruzicka, M. Mathematical modeling of electrorheological materials. Contin. Mech. Thermodyn. 2001, 13, 59–78. [Google Scholar] [CrossRef]
  45. Ruiz-Medina, M.D.; Anh, V.V.; Angulo, J.M. Fractional generalized random fields of variable order. Stoch. Anal. Appl. 2004, 22, 775–799. [Google Scholar] [CrossRef]
  46. Zhikov, V.V. On the density of smooth functions in Sobolev-Orlicz spaces. POMI 2004, 226, 67–81. [Google Scholar] [CrossRef]
  47. Amster, P.; Nápoli, P.; Mariani, M.C. Existence of solutions for elliptic systems with critical Sobolev exponent. Electron. J. Differ. Equ. 2002, 2002, 1–13. [Google Scholar]
  48. Bartsch, T.; Guo, Y. Existence and nonexistence results for critical growth polyharmonic elliptic systems. J. Diff. Equ. 2006, 220, 531–543. [Google Scholar] [CrossRef] [Green Version]
  49. Bartsch, T.; Liu, Z. On a superlinear elliptic p–Laplacian equation. J. Differ. Equ. 2004, 198, 149–175. [Google Scholar] [CrossRef]
  50. Bartsch, T.; Schneider, M.; Weth, T. Multiple solutions of a critical polyharmonic equation. J. Reine Angew. Math. 2004, 571, 131–143. [Google Scholar] [CrossRef]
  51. Bartsch, T.; Weth, T.; Willem, M. A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator. Calc. Var. Partial Differ. Equ. 2003, 18, 253–268. [Google Scholar] [CrossRef]
  52. Boccardo, L.; de Figueiredo, D. Some remarks on a system of quasilinear elliptic equations. Nonlinear Differ. Equ. Appl. NODEA 2002, 9, 309–323. [Google Scholar] [CrossRef]
  53. Brézis, H.; Nirenberg, L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 1983, 36, 437–477. [Google Scholar] [CrossRef]
  54. Dinca, G.; Jebelean, P.; Mawhin, J. Variational and topological methods for Dirichlet problems with p–Laplacian. Portugal Math. 2001, 58, 339–378. [Google Scholar]
  55. Drábek, P.; Kufner, A.; Nicolosi, F. Quasilinear Elliptic Equations with Degenerations and Singularities; de Gruyter: Berlin, Germany, 1997. [Google Scholar]
  56. Edmunds, D.E.; Fortunato, D.; Jannelli, E. Critical exponents critical dimensions and biharmonic operators. Arch. Rat. Mech. Anal. 1990, 112, 269–289. [Google Scholar] [CrossRef]
  57. Gazzola, F.; Grunau, H.C.; Squassina, M. Existence and nonexistence results for critical growth biharmonic elliptic equations. Calc. Var. Partial. Differ. Equ. 2003, 18, 117–143. [Google Scholar] [CrossRef] [Green Version]
  58. Grunau, H. Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents. Calc. Var. 1995, 3, 243–252. [Google Scholar] [CrossRef]
  59. Huang, Y. Existence of positive solutions for a class of the p–Laplace equations. J. Austral. Math. Soc. Sect. B 1994, 36, 249–264. [Google Scholar] [CrossRef] [Green Version]
  60. Kaufmann, U.; Rossi, J.D.; Vidal, R. Fractional Sobolev spaces with variable exponents and fractional p(x)–Laplacians. Electron. J. Qual. Theory Differ. Equ. 2017, 76, 1–10. [Google Scholar] [CrossRef]
  61. Montenegro, M. On nontrivial solutions of critical polyharmonic elliptic systems. J. Differ. Equ. 2009, 247, 906–916. [Google Scholar] [CrossRef] [Green Version]
  62. Napoli, P.D.; Mariani, M. Mountain pass solutions to equations of p–Laplacin type. Nonlinear Anal. 2003, 54, 1205–1219. [Google Scholar] [CrossRef]
  63. Pucci, P.; Serrin, J. Critical exponents and critical dimensions for polyharmonic operators. J. Math. Pures Appl. 1990, 69, 55–83. [Google Scholar]
  64. Autuori, G.; Pucci, P. Elliptic problems involving the fractional Laplacian in RN. J. Differ. Equ. 2013, 255, 2340–2362. [Google Scholar] [CrossRef]
  65. Bahrouni, A. Comparison and sub-supsolution principles for the fractional p(x)–Laplacian. J. Math. Anal. Appl. 2018, 458, 1363–1372. [Google Scholar] [CrossRef]
  66. Bahrouni, A.; Radulescu, V. On a new fractional Sobolev space and application to nonlocal variational problems with variable exponent. Discret. Contin. Dyn. Syst. Ser. S 2018, 11, 379–389. [Google Scholar] [CrossRef] [Green Version]
  67. Caffarelli, L.; Silvestre, L. An extension problem related to the frational Laplacian. Commun. Partial Differ. Equ. 2007, 32, 1245–1260. [Google Scholar] [CrossRef] [Green Version]
  68. Farcaseanu, M. On an eigenvalue problem involving the fractional (s,p)-Laplacian. Fract. Calc. Appl. Anal. 2018, 21, 94–103. [Google Scholar] [CrossRef] [Green Version]
  69. Farcaseanu, M.; Mihailescu, M.; Stancu-Dumitru, D. Perturbed fractional eigenvalue problems. Discret. Contin. Dyn. Syst. Ser. A 2017, 37, 6243–6255. [Google Scholar] [CrossRef] [Green Version]
  70. Kikuchi, K.; Negoro, A. On Markov processes generated by pseudodifferential operator of variable order. Osaka J. Math 1997, 34, 319–335. [Google Scholar]
  71. Leopold, H.G. Embedding of function spaces of variable order of differentiation. Czechoslov. Math J. 1999, 49, 633–641. [Google Scholar] [CrossRef] [Green Version]
  72. Lindgren, E.; Lindqvist, P. Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 2014, 49, 795–826. [Google Scholar] [CrossRef] [Green Version]
  73. Lorenzo, C.F.; Hartley, T.T. Initialized fractional calculus. Int. J. Appl. Math. 2000, 3, 249–265. [Google Scholar]
  74. Lorenzo, C.F.; Hartley, T.T. Variable order and distributed order fractional operators. Nonlinear Dynam. 2002, 29, 57–98. [Google Scholar] [CrossRef]
  75. Mingqi, X.; Bisci, G.M.; Tian, G.; Zhang, B. Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian. Nonlinearity 2016, 29, 357–374. [Google Scholar] [CrossRef]
  76. Mingqi, X.; Radulescu, V.D.; Zhang, B. Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity. Calc. Var. Partial. Differ. Equ. 2019, 58, 57. [Google Scholar] [CrossRef] [Green Version]
  77. Mingqi, X.; Radulescu, V.D.; Zhang, B. Nonlocal Kirchhoff problems with singular exponential nonlinearity. Appl. Math. Optim. 2020. [Google Scholar] [CrossRef] [Green Version]
  78. Bisci, G.M.; Radulescu, V.; Servadei, R. Variational methods for nonlocal fractional problems. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 2016; Volume 162. [Google Scholar]
  79. Nezza, E.D.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
  80. Pucci, P.; Xiang, M.; Zhang, B. Existence and multiplicity of entire solutions for fractional p–Kirchhoff equations. Adv. Nonlinear Anal. 2016, 5, 27–55. [Google Scholar] [CrossRef]
  81. Pucci, P.; Xiang, M.; Zhang, B. Multiple solutions for nonhomogeneous Schrodinger-Kirchhoff type equations involving the fractional p–Laplacian in RN. Calc. Var. Partial Differ. Equ. 2015, 54, 2785–2806. [Google Scholar] [CrossRef]
  82. Servadei, R.; Valdinoci, E. Mountain pass solutions for non-local elliptic operator. J. Math. Anal. Appl. 2012, 389, 887–898. [Google Scholar] [CrossRef] [Green Version]
  83. Servadei, R.; Valdinoci, E. Variational methods for non-local operators of elliptic type. Discret. Contin. Dyn. Syst. 2013, 33, 2105–2137. [Google Scholar] [CrossRef]
  84. Xiang, M.; Radulescu, V.; Zhang, B. Existence of solutions for perturbed fractional p–Laplacian equations. J. Differ. Equ. 2016, 260, 1392–1413. [Google Scholar] [CrossRef]
  85. Xiang, M.; Wang, F. Fractional Schrodinger-Poisson-Kirchhoff systems involving critical nonlinearities. Nonlineaer Anal. 2017, 164, 1–26. [Google Scholar] [CrossRef]
  86. Xiang, M.; Zhang, B.; Ferrara, M. Existence of solutions for Kirchhoff type problem involving the non-local fractional p–Laplacian. J. Math. Anal. Appl. 2015, 424, 1021–1041. [Google Scholar] [CrossRef]
  87. Xiang, M.; Zhang, B.; Guo, X. Infinitely many solutions for a fractional Kirchhoff type problem via Fountain theorem. Nonlinear Anal. 2015, 120, 299–313. [Google Scholar] [CrossRef]
  88. Bonder, J.F.; Salort, A.M. Fractional order Orlicz-Sobolev spaces. J. Funct. Anal. 2019. [Google Scholar] [CrossRef] [Green Version]
  89. Garciá-Huidobro, M.; Le, V.K.; Manásevich, R.; Schmitt, K. On principle eigenvalues for quasilinear elliptic differential operators: An Orlicz-Sobolev space setting. Nonlineae Differ. Equ. Appl. 1999, 6, 207–225. [Google Scholar] [CrossRef]
  90. Choi, Q.; Jung, T. Existence of solution for p–Laplacian boundary value problems with two singular and subcritical nonlinearities. Bound. Value Probl. 2019. [Google Scholar] [CrossRef] [Green Version]
  91. Agawal, R.; Lü, H.; O’Regan, D. A necessary and sufficient condition for the existence of positive solution to the singular p-Laplacian. Z. Anal. Anwend. 2003, 22, 689–709. [Google Scholar] [CrossRef] [Green Version]
  92. Agawal, R.; Lü, H.; O’Regan, D. Existence theorems for the one-dimensional singular p-Laplacian equation with sign changing nonlinearities. Appl. Math. Comput. 2003, 143, 15–38. [Google Scholar]
  93. Godoy, P.T.; Kaufmann, U. On Dirichlet problems with singular nonlinearity of indefinite sign. J. Math. Anal. Appl. 2015, 428, 1239–1251. [Google Scholar] [CrossRef]
  94. Kaufmann, U.; Medri, I. One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign. Adv. Nonlinear Anal. 2016, 5, 251–259. [Google Scholar] [CrossRef] [Green Version]
  95. Kaufmann, U.; Medri, I. Strictly positive solutions for one-dimensional nonlinear problems involving the p–Laplacian. Bull. Austral. Math. Soc. 2014, 89, 243–251. [Google Scholar] [CrossRef] [Green Version]
  96. Kaufmann, U.; Medri, I. Strictly positive solutions for one-dimensional nonlinear elliptic problems. Electron J. Differ. Equ. 2014, 126, 13. [Google Scholar]
  97. Lü, H.; O’Regan, D.; Agawal, R. Positive solutions for singular p–Laplacian equations with sign changing nonlinearities using inequality theory. Appl. Math. Comput. 2005, 165, 587–597. [Google Scholar] [CrossRef]
  98. Lü, H.; Zhong, C. A note on singular nonlinear boundary value problems for the one-dimensional p–Laplacian. Appl. Math. Lett. 2001, 14, 189–194. [Google Scholar] [CrossRef] [Green Version]
  99. Ma, D.; Han, J.; Chen, X. Positive solution of three-point boundary value problem for the one-dimensional p–Laplacian with singularities. J. Math. Anal. Appl. 2006, 324, 118–133. [Google Scholar] [CrossRef] [Green Version]
  100. Sun, B.; Ge, W. Existence and iteration of positive solutions for some p–Laplacian boundary value problems. Nonlinear Anal. 2007, 67, 1820–1830. [Google Scholar] [CrossRef]
  101. Wang, J.; Gao, W. A singular boundary value problem for the one-dimensional p–Laplacian. J. Math. Anal. Appl. 1996, 201, 851–866. [Google Scholar] [CrossRef]
  102. Choi, Q.; Jung, T. On the fractional p–Laplacian problems. J. Inequalities Appl. 2021. [Google Scholar] [CrossRef]
  103. Fiscella, A. A fractional Kirchhoff problem involving a singular term and a critical nonlinearity. Adv. Nonlinear Anal. 2019, 8, 645–660. [Google Scholar] [CrossRef]
  104. Ji, C.; Fang, F.; Zhang, B. A multiplicity result for asymptotically linear Kirchhoff equations. Adv. Nonlinear Anal. 2019, 8, 267–277. [Google Scholar] [CrossRef]
  105. Xiang, M.; Zhang, B.; Radulescu, V.D. Superlinear Schrodinger-Kirchhoff type problems involving the fractional p–Laplacian and critical exponent. Adv. Nonlinear Anal. 2020, 9, 690–709. [Google Scholar] [CrossRef]
  106. Zhikov, V.V. On some variational problems. Russ. J. Math. Phys. 1997, 5, 105–116. [Google Scholar]
  107. Fan, X.; Zhao, D. On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef] [Green Version]
  108. Kovácik, O.; Rákosnik, J. On spaces Lp(x) and W1,p(x). Czech. Math. J. 1991, 41, 592–618. [Google Scholar]
  109. Salort, A.M. A fractional Orlicz-Sobolev eigenvalue problem and related Hardy inequalities. arXiv 2018, arXiv:1807.03209. [Google Scholar]
  110. Azroul, E.; Benkirane, A.; Srati, M. Existence of solutions for a nonlocal type problem in fractional Orlicz-Sobolev spaces. Adv. Oper. Theory 2020, 5, 1350–1375. [Google Scholar] [CrossRef] [Green Version]
  111. Bott, R. Nondegenerate critical manifolds. Ann. Math. 1954, 60, 248–261. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Choi, Q.-H.; Jung, T. Fractional N-Laplacian Problems Defined on the One-Dimensional Subspace. Symmetry 2021, 13, 1819. https://doi.org/10.3390/sym13101819

AMA Style

Choi Q-H, Jung T. Fractional N-Laplacian Problems Defined on the One-Dimensional Subspace. Symmetry. 2021; 13(10):1819. https://doi.org/10.3390/sym13101819

Chicago/Turabian Style

Choi, Q-Heung, and Tacksun Jung. 2021. "Fractional N-Laplacian Problems Defined on the One-Dimensional Subspace" Symmetry 13, no. 10: 1819. https://doi.org/10.3390/sym13101819

APA Style

Choi, Q. -H., & Jung, T. (2021). Fractional N-Laplacian Problems Defined on the One-Dimensional Subspace. Symmetry, 13(10), 1819. https://doi.org/10.3390/sym13101819

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop