Fractional N-Laplacian Problems Defined on the One-Dimensional Subspace
Abstract
:1. Introduction
- (i)
- for some .
- (ii)
- for some neighborhood U of C, the distance function from u to C and a constant .
2. Fractional Orlicz-Sobolev Space
- (i)
- ⇔,⇔⇔
- (ii)
- If, then.
- (iii)
- If, then.
3. Variational Results
4. Proofs of Theorems 1 and 2
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Applebaum, D. Lévy processes-From Probability to Finance and Quantum Groups, Notices. AMS 2004, 51, 1336–1347. [Google Scholar]
- Chen, Y.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 2006, 66, 1383–1406. [Google Scholar] [CrossRef] [Green Version]
- Cont, R.; Tankov, P. Financial Modelling with Jump Processes; Financial Mathematics Series; Chapman and Hall/CRC: Boca Raton, FL, USA, 2004; Volume 2. [Google Scholar]
- Gossez, J.P. Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Am. Math. Soc. 1974, 190, 163–205. [Google Scholar] [CrossRef]
- Hsini, M.; Irzi, N.; Kefi, K. On a fractional problem with variable exponent. Proc. Rom. Acad. Ser. Math. Phys. Tech. Sci. Inf. Sci. 2019, 71, 223–237. [Google Scholar]
- Mihailescu, M.; Radulescu, V. Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces. Ann. Inst. Fourier 2008, 58, 2087–2111. [Google Scholar] [CrossRef] [Green Version]
- Musielak, J. Orlicz Spaces and Modular Spaces; Springer: Berlin, Germany, 1983. [Google Scholar]
- Pezzo, L.M.; Rossi, J.D. Trace for fractional Sobolev spaces with variables exponents. arXiv 2017, arXiv:1704.02599. [Google Scholar]
- Rao, M.M.; Ren, Z.D. Theory of Orlicz Spaces; Marcel Dekker, Inc.: New York, NY, USA, 1991. [Google Scholar]
- Ruzicka, M. Electrorheological Fluids: Modeling and mathematical theory. In Lecture Notes in Mathematics; Springer: Berlin, Germany, 2002; Volume 1748. [Google Scholar]
- Samorodnitsky, G.; Taqqu, M.S. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance; Chapman and Hall: New York, NY, USA, 1994; Volume 2. [Google Scholar]
- Zhang, C.; Zhang, X. Renormalized solutions for the fractional p(x)-Laplacian equation with L1 data. arXiv 2017, arXiv:1708.04481v1. [Google Scholar] [CrossRef]
- Zhang, Q. Existence of solutions for p(x)–Laplacian equations with singular coefficients in RN. Math. Anal. Appl. 2008, 348, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Zhikov, V.V. Averaging of functionals of the calculus of variations and elasticity theory. SSSR Ser. Mat. 1986, 50, 675–710. [Google Scholar] [CrossRef]
- Bandle, C. Asymptotic behavior of large solutions of quasilinear elliptic problems. Z. Angew. Math. Phys. 2003, 54, 731–738. [Google Scholar] [CrossRef] [Green Version]
- Bandle, C.; Essen, M. On the solutions of quasilinear elliptic problems with boundary blow-up, in partial differential equations of elliptic type (Cortona, 1992). Sympos. Math. 1994, 35, 93–111. [Google Scholar]
- Bandle, C.; Marcus, M. ‘Large’ solutions of semilinear elliptic equations: Existence, uniqueness, and asymptotic behavior. J. Anal. Math. 1992, 58, 9–24. [Google Scholar] [CrossRef]
- Bandle, C.; Marcus, M. Dependence of blowup rate of large solutions of semilinear elliptic equations on the curvature of the boundary. Complex Var. Theory Appl. 2004, 49, 555–570. [Google Scholar] [CrossRef]
- Du, Y.; Huang, Q. Blow-up solutions for a class of semilinear elliptic and parabolic equations. SIAM J. Math. Anal. 1999, 31, 1–18. [Google Scholar] [CrossRef]
- Dunninger, D.R.; Wang, H. It Multiplicity of positive radial solutions for an elliptic system on an annlus domain. Nonlinear Anal. TMA 2000, 42, 5. [Google Scholar] [CrossRef]
- Dupaigne, L.; Ghergu, M.; Radulescu, V. Lane-Emden-Fowler equations with convection and singular potential. J. Math. Pures Appl. 2007, 87, 563–581. [Google Scholar] [CrossRef] [Green Version]
- Fulks, W.; Maybee, J.S. A singular nonlinear equation. Osaka Math. J. 1960, 12, 1–19. [Google Scholar]
- Garcia-Melián, J.; Letelier-Albornoz, R.; de Lis, J.S. Uniqueness and asymptotic behavior for solutions of semilinear problems with boundary blow-up. Proc. Am. Math. Soc. 2001, 129, 3593–3602. [Google Scholar] [CrossRef]
- Ghergu, M.; Rádulescu, V. Singular Elliptic Problems, Bifurcation and Asymptotic Analysis; Oxford Lecture Series in Mathematics and Its Applications; Oxford University Press: Oxford, UK, 2008; Volume 37. [Google Scholar]
- Lazer, A.C.; McKenna, P.J. Asymptotic behavior of solutions of boundary blowup problems. Differ. Integral Equ. 1994, 7, 1001–1019. [Google Scholar]
- Lazer, A.C.; McKenna, P.J. On a problem of Bieberbach and Rademacher. Nonlinear Anal. 1993, 21, 327–335. [Google Scholar] [CrossRef]
- Loewner, C.; Nirenberg, L. Partial differential equations invariant under conformal or projective transformations. In Contribution to Analysis; Academic Press: New York, NY, USA, 1974; pp. 245–272. [Google Scholar]
- Marcus, M.; Véron, L. Existence and uniqueness results for large solutions of general nonlinear elliptic equations. J. Evol. Equ. 2003, 3, 637–652. [Google Scholar] [CrossRef]
- Marcus, M.; Véron, L. Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations. Ann. Inst. Anal. Nonlinéaire 1997, 14, 237–274. [Google Scholar] [CrossRef] [Green Version]
- O’Regan, D. Some general existence principles and results for (ϕ(y′))′ = qf(t,y,y′), 0<t < 1. SIAM J. Math. Anal. 1993, 24, 648–668. [Google Scholar]
- Rademacher, H. Einige besondere Probleme der partiellen Differentialgleichungen. In Die Differential and Integralgleichungen der Mechanik and Physik I, 2nd ed.; Frank, P., von Mises, R., Eds.; Rosenberg: New York, NY, USA, 1943; pp. 838–845. [Google Scholar]
- Radulescu, V. Singular phenomena in nonlinear elliptic problems, From blow-up boundary solutions to equations with singular nonlinearities. In Handbook of Differential Equations: Stationary Partial Differential Equations; North-Holland Elsevier Science: Amsterdam, The Netherlands, 2007; Volume 4, pp. 483–591. [Google Scholar]
- Ratto, A.; Rigoli, M.; Véron, L. Scalar curvature and conformal deformation of hyperbolic space. J. Funct. Anal. 1994, 121, 15–77. [Google Scholar] [CrossRef]
- Shi, J.; Yao, M. On a singular nonlinear semilinear elliptic problem. Proc. R. Soc. Edinburgh. Sect. A 1998, 128, 1389–1401. [Google Scholar] [CrossRef] [Green Version]
- Trabelsi, M.; Trabelsi, N. Singular limit solutions for a 2-dimensional semilinear elliptic system of Liouville type. Adv. Nonlinear Anal. 2016, 5, 315–329. [Google Scholar] [CrossRef]
- Alves, C.O.; Ferreira, M.C. Existence of solutions for a class of p(x)–Laplacian equations involving a concave-convex nonlinearity with critical growth in RN. Topol. Methods Nonlinear Anal. 2015, 45, 399–422. [Google Scholar] [CrossRef]
- Amrouss, A.R.E.; Kissi, F. Multiplicity of solutions for a general p(x)–Laplacian Dirichlet problem. Arab. J. Math. Sci. 2013, 19, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Benouhiba, N. Nonlocal eigenvalue problems in variable exponent Sobolev spaces. J. Nonlinear Funct. Anal. 2015, 2015, 1–15. [Google Scholar]
- Diening, L. Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and Wk,p(·). Math. Nachr. 2004, 268, 31–43. [Google Scholar] [CrossRef]
- Diening, L.; Harjulehto, P.; Hasto, P.; Ruzicka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Springer: Heidelberg, Germany, 2011. [Google Scholar]
- Lê, A. Eigenvalue Problems for the p–Laplacian. Nonlinear Anal. 2006, 64, 1057–1099. [Google Scholar] [CrossRef]
- Mihailescu, M.; Pucci, P.; Radulescu, V. Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. 2008, 340, 687–698. [Google Scholar] [CrossRef] [Green Version]
- Mihailescu, M.; Radulescu, V. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2006, 462, 2625–2641. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, K.; Ruzicka, M. Mathematical modeling of electrorheological materials. Contin. Mech. Thermodyn. 2001, 13, 59–78. [Google Scholar] [CrossRef]
- Ruiz-Medina, M.D.; Anh, V.V.; Angulo, J.M. Fractional generalized random fields of variable order. Stoch. Anal. Appl. 2004, 22, 775–799. [Google Scholar] [CrossRef]
- Zhikov, V.V. On the density of smooth functions in Sobolev-Orlicz spaces. POMI 2004, 226, 67–81. [Google Scholar] [CrossRef]
- Amster, P.; Nápoli, P.; Mariani, M.C. Existence of solutions for elliptic systems with critical Sobolev exponent. Electron. J. Differ. Equ. 2002, 2002, 1–13. [Google Scholar]
- Bartsch, T.; Guo, Y. Existence and nonexistence results for critical growth polyharmonic elliptic systems. J. Diff. Equ. 2006, 220, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, T.; Liu, Z. On a superlinear elliptic p–Laplacian equation. J. Differ. Equ. 2004, 198, 149–175. [Google Scholar] [CrossRef]
- Bartsch, T.; Schneider, M.; Weth, T. Multiple solutions of a critical polyharmonic equation. J. Reine Angew. Math. 2004, 571, 131–143. [Google Scholar] [CrossRef]
- Bartsch, T.; Weth, T.; Willem, M. A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator. Calc. Var. Partial Differ. Equ. 2003, 18, 253–268. [Google Scholar] [CrossRef]
- Boccardo, L.; de Figueiredo, D. Some remarks on a system of quasilinear elliptic equations. Nonlinear Differ. Equ. Appl. NODEA 2002, 9, 309–323. [Google Scholar] [CrossRef]
- Brézis, H.; Nirenberg, L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 1983, 36, 437–477. [Google Scholar] [CrossRef]
- Dinca, G.; Jebelean, P.; Mawhin, J. Variational and topological methods for Dirichlet problems with p–Laplacian. Portugal Math. 2001, 58, 339–378. [Google Scholar]
- Drábek, P.; Kufner, A.; Nicolosi, F. Quasilinear Elliptic Equations with Degenerations and Singularities; de Gruyter: Berlin, Germany, 1997. [Google Scholar]
- Edmunds, D.E.; Fortunato, D.; Jannelli, E. Critical exponents critical dimensions and biharmonic operators. Arch. Rat. Mech. Anal. 1990, 112, 269–289. [Google Scholar] [CrossRef]
- Gazzola, F.; Grunau, H.C.; Squassina, M. Existence and nonexistence results for critical growth biharmonic elliptic equations. Calc. Var. Partial. Differ. Equ. 2003, 18, 117–143. [Google Scholar] [CrossRef] [Green Version]
- Grunau, H. Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents. Calc. Var. 1995, 3, 243–252. [Google Scholar] [CrossRef]
- Huang, Y. Existence of positive solutions for a class of the p–Laplace equations. J. Austral. Math. Soc. Sect. B 1994, 36, 249–264. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, U.; Rossi, J.D.; Vidal, R. Fractional Sobolev spaces with variable exponents and fractional p(x)–Laplacians. Electron. J. Qual. Theory Differ. Equ. 2017, 76, 1–10. [Google Scholar] [CrossRef]
- Montenegro, M. On nontrivial solutions of critical polyharmonic elliptic systems. J. Differ. Equ. 2009, 247, 906–916. [Google Scholar] [CrossRef] [Green Version]
- Napoli, P.D.; Mariani, M. Mountain pass solutions to equations of p–Laplacin type. Nonlinear Anal. 2003, 54, 1205–1219. [Google Scholar] [CrossRef]
- Pucci, P.; Serrin, J. Critical exponents and critical dimensions for polyharmonic operators. J. Math. Pures Appl. 1990, 69, 55–83. [Google Scholar]
- Autuori, G.; Pucci, P. Elliptic problems involving the fractional Laplacian in RN. J. Differ. Equ. 2013, 255, 2340–2362. [Google Scholar] [CrossRef]
- Bahrouni, A. Comparison and sub-supsolution principles for the fractional p(x)–Laplacian. J. Math. Anal. Appl. 2018, 458, 1363–1372. [Google Scholar] [CrossRef]
- Bahrouni, A.; Radulescu, V. On a new fractional Sobolev space and application to nonlocal variational problems with variable exponent. Discret. Contin. Dyn. Syst. Ser. S 2018, 11, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Caffarelli, L.; Silvestre, L. An extension problem related to the frational Laplacian. Commun. Partial Differ. Equ. 2007, 32, 1245–1260. [Google Scholar] [CrossRef] [Green Version]
- Farcaseanu, M. On an eigenvalue problem involving the fractional (s,p)-Laplacian. Fract. Calc. Appl. Anal. 2018, 21, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Farcaseanu, M.; Mihailescu, M.; Stancu-Dumitru, D. Perturbed fractional eigenvalue problems. Discret. Contin. Dyn. Syst. Ser. A 2017, 37, 6243–6255. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, K.; Negoro, A. On Markov processes generated by pseudodifferential operator of variable order. Osaka J. Math 1997, 34, 319–335. [Google Scholar]
- Leopold, H.G. Embedding of function spaces of variable order of differentiation. Czechoslov. Math J. 1999, 49, 633–641. [Google Scholar] [CrossRef] [Green Version]
- Lindgren, E.; Lindqvist, P. Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 2014, 49, 795–826. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, C.F.; Hartley, T.T. Initialized fractional calculus. Int. J. Appl. Math. 2000, 3, 249–265. [Google Scholar]
- Lorenzo, C.F.; Hartley, T.T. Variable order and distributed order fractional operators. Nonlinear Dynam. 2002, 29, 57–98. [Google Scholar] [CrossRef]
- Mingqi, X.; Bisci, G.M.; Tian, G.; Zhang, B. Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian. Nonlinearity 2016, 29, 357–374. [Google Scholar] [CrossRef]
- Mingqi, X.; Radulescu, V.D.; Zhang, B. Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity. Calc. Var. Partial. Differ. Equ. 2019, 58, 57. [Google Scholar] [CrossRef] [Green Version]
- Mingqi, X.; Radulescu, V.D.; Zhang, B. Nonlocal Kirchhoff problems with singular exponential nonlinearity. Appl. Math. Optim. 2020. [Google Scholar] [CrossRef] [Green Version]
- Bisci, G.M.; Radulescu, V.; Servadei, R. Variational methods for nonlocal fractional problems. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 2016; Volume 162. [Google Scholar]
- Nezza, E.D.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Pucci, P.; Xiang, M.; Zhang, B. Existence and multiplicity of entire solutions for fractional p–Kirchhoff equations. Adv. Nonlinear Anal. 2016, 5, 27–55. [Google Scholar] [CrossRef]
- Pucci, P.; Xiang, M.; Zhang, B. Multiple solutions for nonhomogeneous Schrodinger-Kirchhoff type equations involving the fractional p–Laplacian in RN. Calc. Var. Partial Differ. Equ. 2015, 54, 2785–2806. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. Mountain pass solutions for non-local elliptic operator. J. Math. Anal. Appl. 2012, 389, 887–898. [Google Scholar] [CrossRef] [Green Version]
- Servadei, R.; Valdinoci, E. Variational methods for non-local operators of elliptic type. Discret. Contin. Dyn. Syst. 2013, 33, 2105–2137. [Google Scholar] [CrossRef]
- Xiang, M.; Radulescu, V.; Zhang, B. Existence of solutions for perturbed fractional p–Laplacian equations. J. Differ. Equ. 2016, 260, 1392–1413. [Google Scholar] [CrossRef]
- Xiang, M.; Wang, F. Fractional Schrodinger-Poisson-Kirchhoff systems involving critical nonlinearities. Nonlineaer Anal. 2017, 164, 1–26. [Google Scholar] [CrossRef]
- Xiang, M.; Zhang, B.; Ferrara, M. Existence of solutions for Kirchhoff type problem involving the non-local fractional p–Laplacian. J. Math. Anal. Appl. 2015, 424, 1021–1041. [Google Scholar] [CrossRef]
- Xiang, M.; Zhang, B.; Guo, X. Infinitely many solutions for a fractional Kirchhoff type problem via Fountain theorem. Nonlinear Anal. 2015, 120, 299–313. [Google Scholar] [CrossRef]
- Bonder, J.F.; Salort, A.M. Fractional order Orlicz-Sobolev spaces. J. Funct. Anal. 2019. [Google Scholar] [CrossRef] [Green Version]
- Garciá-Huidobro, M.; Le, V.K.; Manásevich, R.; Schmitt, K. On principle eigenvalues for quasilinear elliptic differential operators: An Orlicz-Sobolev space setting. Nonlineae Differ. Equ. Appl. 1999, 6, 207–225. [Google Scholar] [CrossRef]
- Choi, Q.; Jung, T. Existence of solution for p–Laplacian boundary value problems with two singular and subcritical nonlinearities. Bound. Value Probl. 2019. [Google Scholar] [CrossRef] [Green Version]
- Agawal, R.; Lü, H.; O’Regan, D. A necessary and sufficient condition for the existence of positive solution to the singular p-Laplacian. Z. Anal. Anwend. 2003, 22, 689–709. [Google Scholar] [CrossRef] [Green Version]
- Agawal, R.; Lü, H.; O’Regan, D. Existence theorems for the one-dimensional singular p-Laplacian equation with sign changing nonlinearities. Appl. Math. Comput. 2003, 143, 15–38. [Google Scholar]
- Godoy, P.T.; Kaufmann, U. On Dirichlet problems with singular nonlinearity of indefinite sign. J. Math. Anal. Appl. 2015, 428, 1239–1251. [Google Scholar] [CrossRef]
- Kaufmann, U.; Medri, I. One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign. Adv. Nonlinear Anal. 2016, 5, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, U.; Medri, I. Strictly positive solutions for one-dimensional nonlinear problems involving the p–Laplacian. Bull. Austral. Math. Soc. 2014, 89, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, U.; Medri, I. Strictly positive solutions for one-dimensional nonlinear elliptic problems. Electron J. Differ. Equ. 2014, 126, 13. [Google Scholar]
- Lü, H.; O’Regan, D.; Agawal, R. Positive solutions for singular p–Laplacian equations with sign changing nonlinearities using inequality theory. Appl. Math. Comput. 2005, 165, 587–597. [Google Scholar] [CrossRef]
- Lü, H.; Zhong, C. A note on singular nonlinear boundary value problems for the one-dimensional p–Laplacian. Appl. Math. Lett. 2001, 14, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Han, J.; Chen, X. Positive solution of three-point boundary value problem for the one-dimensional p–Laplacian with singularities. J. Math. Anal. Appl. 2006, 324, 118–133. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Ge, W. Existence and iteration of positive solutions for some p–Laplacian boundary value problems. Nonlinear Anal. 2007, 67, 1820–1830. [Google Scholar] [CrossRef]
- Wang, J.; Gao, W. A singular boundary value problem for the one-dimensional p–Laplacian. J. Math. Anal. Appl. 1996, 201, 851–866. [Google Scholar] [CrossRef]
- Choi, Q.; Jung, T. On the fractional p–Laplacian problems. J. Inequalities Appl. 2021. [Google Scholar] [CrossRef]
- Fiscella, A. A fractional Kirchhoff problem involving a singular term and a critical nonlinearity. Adv. Nonlinear Anal. 2019, 8, 645–660. [Google Scholar] [CrossRef]
- Ji, C.; Fang, F.; Zhang, B. A multiplicity result for asymptotically linear Kirchhoff equations. Adv. Nonlinear Anal. 2019, 8, 267–277. [Google Scholar] [CrossRef]
- Xiang, M.; Zhang, B.; Radulescu, V.D. Superlinear Schrodinger-Kirchhoff type problems involving the fractional p–Laplacian and critical exponent. Adv. Nonlinear Anal. 2020, 9, 690–709. [Google Scholar] [CrossRef]
- Zhikov, V.V. On some variational problems. Russ. J. Math. Phys. 1997, 5, 105–116. [Google Scholar]
- Fan, X.; Zhao, D. On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef] [Green Version]
- Kovácik, O.; Rákosnik, J. On spaces Lp(x) and W1,p(x). Czech. Math. J. 1991, 41, 592–618. [Google Scholar]
- Salort, A.M. A fractional Orlicz-Sobolev eigenvalue problem and related Hardy inequalities. arXiv 2018, arXiv:1807.03209. [Google Scholar]
- Azroul, E.; Benkirane, A.; Srati, M. Existence of solutions for a nonlocal type problem in fractional Orlicz-Sobolev spaces. Adv. Oper. Theory 2020, 5, 1350–1375. [Google Scholar] [CrossRef] [Green Version]
- Bott, R. Nondegenerate critical manifolds. Ann. Math. 1954, 60, 248–261. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Q.-H.; Jung, T. Fractional N-Laplacian Problems Defined on the One-Dimensional Subspace. Symmetry 2021, 13, 1819. https://doi.org/10.3390/sym13101819
Choi Q-H, Jung T. Fractional N-Laplacian Problems Defined on the One-Dimensional Subspace. Symmetry. 2021; 13(10):1819. https://doi.org/10.3390/sym13101819
Chicago/Turabian StyleChoi, Q-Heung, and Tacksun Jung. 2021. "Fractional N-Laplacian Problems Defined on the One-Dimensional Subspace" Symmetry 13, no. 10: 1819. https://doi.org/10.3390/sym13101819
APA StyleChoi, Q. -H., & Jung, T. (2021). Fractional N-Laplacian Problems Defined on the One-Dimensional Subspace. Symmetry, 13(10), 1819. https://doi.org/10.3390/sym13101819