Spontaneous Lorentz Violation from Infrared Gravity
Abstract
:1. Introduction
2. Extended Uncertainty Principle and Modified Hawking Temperature
3. Standard Model Extension and Modified Hawking Temperature
4. Comparison and Consistency Conditions
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polchinski, J. String Theory; Cambridge University Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Green, M.B.; Schwarz, J.H.; Witten, E. Superstring Theory; Cambridge University Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Rovelli, C.; Vidotto, F. Covariant Loop Quantum Gravity; Cambridge University Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Amelino-Camelia, G.; Ellis, J.R.; Mavromatos, N.E.; Nanopoulos, D.V.; Sarkar, S. Tests of quantum gravity from observations of gamma-ray bursts. Nature 1998, 393, 763. [Google Scholar] [CrossRef] [Green Version]
- Magueijo, J.; Smolin, L. Lorentz invariance with an invariant energy scale. Phys. Rev. Lett. 2002, 88, 190403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amelino-Camelia, G. Doubly special relativity. Nature 2002, 418, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231. [Google Scholar] [CrossRef]
- Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253. [Google Scholar] [CrossRef]
- Susskind, L.; Witten, E. The Holographic bound in anti-de Sitter space. arXiv 1998, arXiv:9805114. [Google Scholar]
- Hinrichsen, H.; Kempf, A. Maximal localization in the presence of minimal uncertainties in positions and momenta. J. Math. Phys. 1996, 37, 2121. [Google Scholar] [CrossRef] [Green Version]
- Kempf, A. On quantum field theory with nonzero minimal uncertainties in positions and momenta. J. Math. Phys. 1997, 38, 1347. [Google Scholar] [CrossRef] [Green Version]
- Filho, R.N.C.; Braga, J.P.M.; Lira, J.H.S.; Andrade, J.S. Extended uncertainty from first principles. Phys. Lett. B 2016, 755, 367. [Google Scholar] [CrossRef]
- Ong, Y.C.; Yao, Y. Generalized Uncertainty Principle and White Dwarfs Redux: How Cosmological Constant Protects Chandrasekhar Limit. Phys. Rev. D 2018, 98, 126018. [Google Scholar] [CrossRef] [Green Version]
- Zarei, M.; Mirza, B. Minimal Uncertainty in Momentum: The Effects of IR Gravity on Quantum Mechanics. Phys. Rev. D 2009, 79, 125007. [Google Scholar] [CrossRef] [Green Version]
- Schurmann, T.; Hoffmann, I. A closer look at the uncertainty relation of position and momentum. Found. Phys. 2009, 39, 958. [Google Scholar] [CrossRef] [Green Version]
- Schürmann, T. Uncertainty principle on 3-dimensional manifolds of constant curvature. Found. Phys. 2018, 48, 716. [Google Scholar] [CrossRef] [Green Version]
- Dabrowski, M.P.; Wagner, F. Extended Uncertainty Principle for Rindler and cosmological horizons. Eur. Phys. J. C 2019, 79, 716. [Google Scholar] [CrossRef] [Green Version]
- Dabrowski, M.P.; Wagner, F. Asymptotic Generalized Extended Uncertainty Principle. Eur. Phys. J. C 2020, 80, 676. [Google Scholar] [CrossRef]
- Petruzziello, L.; Wagner, F. Gravitationally induced uncertainty relations in curved backgrounds. Phys. Rev. D 2021, 103, 104061. [Google Scholar] [CrossRef]
- Amati, D.; Ciafaloni, M.; Veneziano, G. Superstring collisions at planckian energies. Phys. Lett. B 1987, 197, 81. [Google Scholar] [CrossRef] [Green Version]
- Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 1995, 52, 1108. [Google Scholar] [CrossRef] [Green Version]
- Maggiore, M. A Generalized Uncertainty Principle in Quantum Gravity. Phys. Lett. B 1993, 304, 65. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.J.; Santiago, D.I. On gravity and the uncertainty principle. Mod. Phys. Lett. A 1999, 14, 1371. [Google Scholar] [CrossRef]
- Kanazawa, T.; Lambiase, G.; Vilasi, G.; Yoshioka, A. Noncommutative Schwarzschild geometry and generalized uncertainty principle. Eur. Phys. J. C 2019, 79, 95. [Google Scholar] [CrossRef] [Green Version]
- Luciano, G.G.; Petruzziello, L. GUP parameter from Maximal Acceleration. Eur. Phys. J. C 2019, 79, 283. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.J.; Chen, P.; Santiago, D.I. The Generalized Uncertainty Principle and Black Hole Remnants. Gen. Rel. Grav. 2001, 33, 2101. [Google Scholar] [CrossRef]
- Chen, P.; Ong, Y.C.; Yeom, D. Black hole remnants and the information loss paradox. Phys. Rep. 2015, 603, 1. [Google Scholar] [CrossRef] [Green Version]
- Scardigli, F.; Lambiase, G.; Vagenas, E. GUP parameter from quantum corrections to the Newtonian potential. Phys. Lett. B 2017, 767, 242. [Google Scholar] [CrossRef]
- Chen, P.; Ong, Y.C.; Yeom, D.H. Generalized Uncertainty Principle: Implications for Black Hole Complementarity. J. High Energy Phys. 2014, 12, 021. [Google Scholar] [CrossRef] [Green Version]
- Buoninfante, L.; Luciano, G.G.; Petruzziello, L. Generalized Uncertainty Principle and Corpuscular Gravity. Eur. Phys. J. C 2019, 79, 663. [Google Scholar] [CrossRef]
- Buoninfante, L.; Lambiase, G.; Luciano, G.G.; Petruzziello, L. Phenomenology of GUP stars. Eur. Phys. J. C 2020, 80, 853. [Google Scholar] [CrossRef]
- Petruzziello, L. Generalized uncertainty principle with maximal observable momentum and no minimal length indeterminacy. Class. Quant. Grav. 2021, 38, 135005. [Google Scholar] [CrossRef]
- Hossenfelder, S. Minimal Length Scale Scenarios for Quantum Gravity. Living Rev. Rel. 2013, 16, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L.; Scardigli, F. Heuristic derivation of Casimir effect in minimal length theories. Int. J. Mod. Phys. D 2020, 29, 2050011. [Google Scholar] [CrossRef]
- Kumar, S.P.; Plenio, M.B. On Quantum Gravity Tests with Composite Particles. Nat. Commun. 2020, 11, 3900. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Vagenas, E.C. Universality of Quantum Gravity Corrections. Phys. Rev. Lett. 2008, 101, 221301. [Google Scholar] [CrossRef] [Green Version]
- Petruzziello, L.; Illuminati, F. Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale. Nat. Commun. 2021, 12, 4449. [Google Scholar] [CrossRef] [PubMed]
- Colladay, D.; Kostelecky, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760. [Google Scholar] [CrossRef] [Green Version]
- Colladay, D.; Kostelecky, V.A. Lorentz violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef] [Green Version]
- Kostelecky, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D 2004, 69, 105009. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecky, V.A. Spontaneous Lorentz violation, Nambu-Goldstone modes, and gravity. Phys. Rev. D 2006, 71, 065008. [Google Scholar] [CrossRef] [Green Version]
- Bailey, Q.G.; Kostelecky, V.A. Signals for Lorentz violation in post-Newtonian gravity. Phys. Rev. D 2006, 74, 045001. [Google Scholar] [CrossRef] [Green Version]
- Lambiase, G.; Scardigli, F. Lorentz violation and generalized uncertainty principle. Phys. Rev. D 2018, 97, 075003. [Google Scholar] [CrossRef] [Green Version]
- Mignemi, S. Extended uncertainty principle and the geometry of (anti)-de Sitter space. Mod. Phys. Lett. A 2010, 25, 1697. [Google Scholar] [CrossRef]
- Scardigli, F. Some heuristic semiclassical derivations of the Planck length, the Hawking effect and the Unruh effect. Nuovo Cim. B 1995, 110, 1029. [Google Scholar] [CrossRef]
- Chung, W.S.; Hassanabadi, H. Black hole temperature and Unruh effect from the extended uncertainty principle. Phys. Lett. B 2019, 793, 451. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology; John Wiley & Sons, Inc.: New York, NY, USA, 1972. [Google Scholar]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Rel. 2014, 17, 4. [Google Scholar] [CrossRef] [Green Version]
- Bailey, Q.G. Time delay and Doppler tests of the Lorentz symmetry of gravity. Phys. Rev. D 2009, 80, 044004. [Google Scholar] [CrossRef] [Green Version]
- Bailey, Q.G. Lorentz-violating gravitoelectromagnetism. Phys. Rev. D 2010, 82, 065012. [Google Scholar] [CrossRef] [Green Version]
- Altschul, B.; Bailey, Q.G.; Kostelecký, V.A. Lorentz violation with an antisymmetric tensor. Phys. Rev. D 2010, 81, 065028. [Google Scholar] [CrossRef] [Green Version]
- Tso, R.; Bailey, Q.G. Light-bending tests of Lorentz invariance. Phys. Rev. D 2011, 84, 085025. [Google Scholar] [CrossRef] [Green Version]
- Tasson, J.D. Lorentz violation, gravitomagnetism, and intrinsic spin. Phys. Rev. D 2012, 86, 124021. [Google Scholar] [CrossRef] [Green Version]
- Bailey, Q.G.; Kostelecký, V.A.; Xu, R. Short-range gravity and Lorentz violation. Phys. Rev. D 2015, 91, 022006. [Google Scholar] [CrossRef] [Green Version]
- Bonder, Y. Lorentz violation in the gravity sector: The t puzzle. Phys. Rev. D 2015, 91, 125002. [Google Scholar] [CrossRef] [Green Version]
- Zee, A. Quantum Field Theory in a Nutshell; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Scardigli, F.; Casadio, R. Gravitational tests of the Generalized Uncertainty Principle. Eur. Phys. J. C 2015, 75, 425. [Google Scholar] [CrossRef] [Green Version]
- Kostelecky, V.A.; Russell, N. Data Tables for Lorentz and CPT Violation. Rev. Mod. Phys. 2011, 83, 11. [Google Scholar] [CrossRef] [Green Version]
- Bourgoin, A.; Hees, A.; Bouquillon, S.; Poncin-Lafitte, C.L.; Francou, G.; Angonin, M.C. Testing Lorentz symmetry with Lunar Laser Ranging. Phys. Rev. Lett. 2016, 117, 241301. [Google Scholar] [CrossRef] [Green Version]
- Shao, L. Tests of Local Lorentz Invariance Violation of Gravity in the Standard Model Extension with Pulsars. Phys. Rev. Lett. 2014, 112, 111103. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Illuminati, F.; Lambiase, G.; Petruzziello, L. Spontaneous Lorentz Violation from Infrared Gravity. Symmetry 2021, 13, 1854. https://doi.org/10.3390/sym13101854
Illuminati F, Lambiase G, Petruzziello L. Spontaneous Lorentz Violation from Infrared Gravity. Symmetry. 2021; 13(10):1854. https://doi.org/10.3390/sym13101854
Chicago/Turabian StyleIlluminati, Fabrizio, Gaetano Lambiase, and Luciano Petruzziello. 2021. "Spontaneous Lorentz Violation from Infrared Gravity" Symmetry 13, no. 10: 1854. https://doi.org/10.3390/sym13101854
APA StyleIlluminati, F., Lambiase, G., & Petruzziello, L. (2021). Spontaneous Lorentz Violation from Infrared Gravity. Symmetry, 13(10), 1854. https://doi.org/10.3390/sym13101854