Continuous Dependence on the Heat Source of 2D Large-Scale Primitive Equations in Oceanic Dynamics
Abstract
:1. Introduction
2. Preliminaries of the Problem
3. A priori Estimates
3.1. Estimates for and
3.2. Estimate for
3.3. Estimate for
4. Exponential Decay Estimates with Time When
5. Continuous Dependence on the Heat Source
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lions, J.L.; Temam, R.; Wang, S. New formulations of the primitive equations of atmosphere and applications. Nonlinearity 1992, 5, 237–288. [Google Scholar] [CrossRef]
- Lions, J.L.; Temam, R.; Wang, S. On the equations of the large-scale ocean. Nonlinearity 1999, 5, 1007–1053. [Google Scholar] [CrossRef]
- Lions, J.L.; Temam, R.; Wang, S. Models of the coupled atmosphere and ocean(CAO I). Comput. Mech. Adv. 1993, 1, 5–54. [Google Scholar]
- Lions, J.L.; Temam, R.; Wang, S. Mathematical theory for the coupled atmosphere-ocean models (CAOIII). J. Math. Pures Appl. 1995, 74, 105–163. [Google Scholar]
- Petcu, M.; Temam, R.; Wirosoetisno, D. Existence and regularity results for the primitive equations in the two dimensions. Comm. Pure Appl. Anal. 2004, 3, 115–131. [Google Scholar] [CrossRef]
- Huang, D.W.; Guo, B.L. On two-dimensional large-scale primitive equations in oceanic dynamics (I). Appl. Math. Mech. 2007, 28, 581–592. [Google Scholar] [CrossRef]
- Huang, D.W.; Shen, T.L.; Zheng, Y. Ergodicity of two-dimensional primitive equations of large scale-ocean in geophysics driven by degenerate noise. Appl. Math. Lett. 2020, 102, 106146. [Google Scholar] [CrossRef]
- Hieber, M.; Hussein, A.; Kashiwabara, T. Global strong Lp well-posedness of the 3D primitive equations with heat and salinity diffusion. J. Diff. Equ. 2016, 261, 6950–6981. [Google Scholar] [CrossRef] [Green Version]
- You, B.; Li, F. Global attractor of the three-dimensional primitive equations of large-scale ocean and atmosphere dynamics. Z. Angew. Math. Phys. 2018, 69, 114. [Google Scholar] [CrossRef]
- Jiu, Q.; Li, M.J.; Wang, F. Uniqueness of the global weak solutions to 2D compressible primitive equations. J. Math. Anal. Appl. 2018, 461, 1653–1671. [Google Scholar] [CrossRef]
- Chiodaroli, E.; Michálek, M. Existence and non-uniqueness of global Weak solutions to inviscid primitive and Boussinesq equations. Commun. Math. Phys. 2017, 353, 1201–1216. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.Y.; Yang, M. Global well-posedness for the viscous primitive equations of geophysics. Boundary Value Probl. 2016, 2016, 21. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.Y.; Cui, S.B. Sharp well-posedness and ill-posedness of the three-dimensional primitive equations of geophysics in Fourier-Besov spaces. Nonlinear Anal. Real World Appl. 2019, 48, 445–465. [Google Scholar] [CrossRef]
- Fang, D.F.; Han, B. Global well-posedness for the 3D primitive equations in anisotropic framework. J. Math. Anal. Appl. 2020, 484, 123714. [Google Scholar] [CrossRef]
- Li, Y.F.; Xiao, S.Z.; Zeng, P. Continuous dependence of primitive equations of the atmosphere with vapor saturation. J. East China Normal Univ. (Nat. Sci.) 2021, 2021, 34–46. [Google Scholar]
- Li, Y.F. Continuous dependence on boundary parameters for three-dimensional viscous primitive equation of large-scale ocean atmospheric dynamics. J. Jilin Univ. (Sci. Ed.) 2019, 57, 1053–1059. [Google Scholar]
- Liu, Y. Continuous dependence for a thermal convection model with temperature-dependent solubitity. Appl. Math. Comput. 2017, 308, 18–30. [Google Scholar]
- Li, Y.F.; Xiao, S.Z.; Chen, X.J. Spatial alternative and stability of type III Thermoelastic equations. Appl. Math. Mech. 2021, 42, 431–440. [Google Scholar]
- Li, Y.F.; Shi, J.C.; Zhu, H.S.; Huang, S.Q. Fast growth or decay estimates of Thermoelastic equations in an external domain. Acta Math. Sci. 2021, 41A, 1042–1052. [Google Scholar]
- Li, Y.F.; Xiao, S.Z.; Zeng, P. The applications of some basic mathematical inequalities on the convergence of the primitive equations of moist atmosphere. J. Math. Inequalit. 2021, 15, 293–304. [Google Scholar] [CrossRef]
- Li, Y.F.; Chen, X.J.; Shi, J.C. Structural stability in resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a Darcy fluid. Appl. Math. Opt. 2021, 84, 979–999. [Google Scholar] [CrossRef]
- Chen, W.H. Dissipative structure and diffusion phenomena for doubly dissipative elastic waves in two space dimensions. J. Math. Anal. Appl. 2020, 486, 123922. [Google Scholar] [CrossRef] [Green Version]
- Oveissi, S.; Eftekhari, S.A.; Toghraie, D. Longitudinal vibration and instabilities of carbon nanotubes conveying fluid considering size effects of nanoflow and nanostructure. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 2016, 164–173. [Google Scholar] [CrossRef]
- Faridzadeh, M.R.; Semiromi, D.T.; Niroomand, A. Analysis of laminar mixed convection in an inclined square lid-driven cavity with a nanofluid by using an artificial neural network. Heat Transf. Res. 2014, 45, 361–390. [Google Scholar] [CrossRef]
- Oveissi, S.; Toghraie, D.; Eftekhari, S.A. Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid. Phys. E Low-Dimens. Syst. Nanostr. 2016, 2016, 275–283. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, S.Z.; Lin, C.H. Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain. Math. Comput. Simul. 2018, 150, 66–88. [Google Scholar] [CrossRef]
- Scott, N.L.; Straughan, B. Continuous dependence on the reaction terms in porous convection with surface reactions. Quart. Appl. Math. 2013, 71, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Lin, C.H. Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe. Appl. Math. Comput. 2014, 244, 201–208. [Google Scholar] [CrossRef]
- Hameed, A.A.; Harfash, A.J. Continuous dependence of double diffusive convection in a porous medium with temperature-dependent density. Basrah J. Sci. 2019, 37, 1–15. [Google Scholar]
- Hardy, C.H.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1953. [Google Scholar]
- Mitronovic, D.S. Analytical Inequalities; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
- Huang, D.W.; Guo, B.L. On two-dimensional large-scale primitive equations in oceanic dynamics (II). Appl. Math. Mech. (Engl. Ed.) 2007, 28, 593–600. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zeng, P. Continuous Dependence on the Heat Source of 2D Large-Scale Primitive Equations in Oceanic Dynamics. Symmetry 2021, 13, 1961. https://doi.org/10.3390/sym13101961
Li Y, Zeng P. Continuous Dependence on the Heat Source of 2D Large-Scale Primitive Equations in Oceanic Dynamics. Symmetry. 2021; 13(10):1961. https://doi.org/10.3390/sym13101961
Chicago/Turabian StyleLi, Yuanfei, and Peng Zeng. 2021. "Continuous Dependence on the Heat Source of 2D Large-Scale Primitive Equations in Oceanic Dynamics" Symmetry 13, no. 10: 1961. https://doi.org/10.3390/sym13101961
APA StyleLi, Y., & Zeng, P. (2021). Continuous Dependence on the Heat Source of 2D Large-Scale Primitive Equations in Oceanic Dynamics. Symmetry, 13(10), 1961. https://doi.org/10.3390/sym13101961