B Discrepancies Hold Their Ground
Abstract
:1. Introduction
- First, many among such decays are forbidden “classically”, i.e., they only arise at loop level. Since the mechanism responsible for this fact does not seem to be a necessary ingredient of the ultimate theory of fundamental interactions, these decays allow probing new interactions occurring at the loop or even the tree level. As a matter of fact, the interaction scale that can thereby be probed is vastly above the Electroweak (EW) scale, e.g., it can attain 103 − 105 TeV from K-meson mixing observables [1,2] (this wide range depends on whether it includes or not -violating quantities such as and on whether the new physics is tree-level- or else loop-mediated via strongly or else weakly coupled new particles);
- It is also noteworthy that many of the decays that do not enjoy this loop suppression, i.e., that arise at the tree level, allow measuring to high precision many of the parameters that enter the SM predictions. This generically allows for a small parametric uncertainty on these decays;
- Besides, given the hierarchies between the EW scale and the b-quark mass, as well as between the latter and the light quarks , and s, many of these decays are calculable within Effective-Field Theory (EFT) frameworks, with controlled errors, especially those scaling as powers of , of , and of the QCD and the QED couplings;
- The latter corrections are actually accompanied by logs, and since the underlying dynamics involves, as argued, vastly different scales, the products need to be summed to all orders for a reliable prediction. Fortunately again, established tools of Renormalization-Group (RG)-improved perturbation theory, as well as systematic expansions along collinear directions often allow consistently identifying and efficiently summing such effects;
- For the decays where an EFT expansion into the local operator is possible, one can also take advantage of nonperturbative techniques to compute the necessary matrix elements between the quark-level operators and the external hadrons, e.g., lattice QCD, which can now often attain predictions to a few percent accuracy.
2. Phenomenology of Leptonic b → s Modes
- The evaluation of the “nonradiative” branching fraction (), i.e., the branching fraction in the absence of soft or collinear QED corrections. The current accuracy on the “matching conditions” is NLO in the electroweak coupling and NNLO in the strong coupling [14,15,16]. Notably, such accuracy allows taming the dependence, now negligible, on the renormalization scheme for electroweak parameters;
- The subtraction of soft-photon radiation and the inclusion of collinear radiation. The purely nonradiative mode is a theoretical quantity, whose width vanishes in the full theory with . The procedure to take into account soft-photon radiation is well known [17,18]. One defines the branching ratio inclusive of an arbitrary number of undetected photons such that , with the energy in the decaying-B rest frame and a cutoff. This yields:More subtle is the inclusion (in ) of photons of arbitrary energy (within their kinematic endpoint), but collinear to a final-state lepton, so that is indistinguishable from ℓ alone. Such an effect has been calculated in Soft Collinear Effective Theory (SCET) [20,21] and shows how, for such photons, the decay really merges onto : the SCET calculation yields corrections proportional to and that lift the chiral suppression inherent in the contribution (This is due to the fact that the energetic photon delocalizes the initial-state light quark (not the b quark!) participating in the weak-transition operator by a distance ). However, the and corrections accidentally cancel each other. The seminal result in [20] should be extended to any other semileptonic B decay mode discussed next, and only such an endeavor would allow conclusively claiming that there are no unaccounted for collinear-log corrections in these modes;
- The time dependence of the initial state. At hadron colliders, one measures the time-integrated sum of the and decays. oscillation effects make this quantity different than the decay rate computed at the initial time, because of the large width difference between the two -system mass eigenstates [22,23,24]. This correction may, in principle, be affected by new physics [25,26].
3. Phenomenology of Semileptonic b → s Modes
3.1. First B Anomaly: Branching Ratio Data
3.2. Second B Anomaly: Differential Data and Analyses
3.3. Third B Anomaly: Lepton-Universality-Violating Ratios
4. Semileptonic b → s Modes: Some Paths Forward
4.1. Lepton Flavor Violation
4.2.
4.3.
5. Phenomenology of Semileptonic b → c Modes
6. Interpretation
- (a)
- Focus on a one-(real-)parameter scenario. This test is useful to address the question whether the observed discrepancies are due to one dominant (weak-effective theory) operator, with a phase aligned with the SM one. This greatly reduces the SMEFT space of possible contributions and excludes sizeable new phases, although this can only be established through -sensitive tests; see below;
- (b)
- Consider two-real-WC scenarios instead. There are certain two-parameter choices that lend themselves to well-defined interpretations in the UV. A first prominent example is vs. , for (see the corresponding operators in Equation (6)). Such a fit serves to establish whether the second interaction in Equation (4), a solution, emerges naturally from the data, i.e., whether the latter is constraining enough already at present. Encouragingly, this exercise tends to return opposite signs for the two WCs, although the magnitude of —mostly determined by the data—tends to be more than twice as large as —which is mostly determined by the slight tension in . A second popular example among model-builders is the case vs. , whereby is a shift common to any lepton flavor and is an additional, muon-specific shift, so that . This scenario is interesting because could be generated by the running of semitauonic operators able to explain , as pointed out in [241]. Intriguingly, the size preferred by the fit is precisely the one needed for this purpose, as first quantified in [225]. It should however be noted that a shift could also arise from four-quark operators [225] and/or it could just be the effect of underestimated hadronic effects;
- (c)
- Perform fits to different subsets of observables, for example: (i) BR plus angular data only (Section 3.1 and Section 3.2); (ii) ratio data only or ratio plus data only (Section 2 and Section 3.3); (iii) perform a truly global fit, including (i) and (ii). In the case of (i) one would focus on “less clean” observables. If the anomalies were here only, it would be very difficult to unambiguously claim new physics of the observed size. This can instead be done, unambiguously, with the observables of case (ii). It is remarkable that both sets of observables do point to new physics of the very same size and in the same EFT directions; see Equation (4). Hence, estimating to the best of our knowledge the errors for the observables of set (i), it makes sense to perform a global fit, that includes (i) and (ii) alike;
- (d)
- Consider complex Wilson coefficients. As has been well known since [242], in the case, the most constraining observables—branching ratios, as well as -averaged angular observables—are such that only NP contributions that are aligned in phase with the SM can interfere with the SM counterparts. This implies that if NP carries a “nonstandard” (i.e., not aligned with the corresponding SM direction) phase, it will be constrained more weakly than NP with a “CKM-like” phase. See [229] for a state-of-the-art discussion. For the Wilson coefficients of greatest interest in connection with anomalies, namely , , and to some extent, , the constraints on the imaginary part end up being looser than on the real part [155]. It should also be noted that the thus-obtained constraints on the imaginary parts are all compatible with zero, and the best-fit values for the real parts are similar whether the corresponding imaginary parts are switched on or off;
- (e)
- Compare NP significances evaluated with theory errors at the SM point vs. theory errors at the given NP point. This is an important issue and is clearly separate from that of evaluating theory errors with robust assumptions on the relevant long-distance physics, in particular form factors and resonant contributions. This issue was already described below Equation (7) and was addressed in [229]. The impact of including theory errors evaluated at the NP point is at present “moderate”: the best-fit points tend to change a little in the case of fits performed with observables of set (i) in item (c) above—mostly for the -only case—and changes are well within the errors attached to the best-fit points; on the other hand, the best-fit points for fits performed with theoretically clean-only observables (set (ii) in item (c) above), the solution basically does not change at all. This issue however warrants further consideration as data accumulate and experimental uncertainties decrease.
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bona, M.; Ciuchini, M.; Franco, E.; Lubicz, V.; Martinelli, G.; Parodi, F.; Pierini, M.; Roudeau, P.; Schiavi, C.; Silvestrini, L.; et al. Model-independent constraints on ΔF = 2 operators and the scale of new physics. J. High Energy Phys. 2008, 3, 049. [Google Scholar] [CrossRef] [Green Version]
- Isidori, G.; Nir, Y.; Perez, G. Flavor Physics Constraints for Physics Beyond the Standard Model. Ann. Rev. Nucl. Part. Sci. 2010, 60, 355. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. Search for the Rare Decays Bs0→e+e− and B0→e+e−. Phys. Rev. Lett. 2020, 124, 211802. [Google Scholar] [CrossRef]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; et al. Search for the decays Bs0→τ+τ− and B0→τ+τ−. Phys. Rev. Lett. 2017, 118, 251802. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; et al. First Evidence for the Decay Bs0→μ+μ−. Phys. Rev. Lett. 2013, 110, 021801. [Google Scholar] [CrossRef] [Green Version]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V.M.; et al. Observation of the rare Bs0→μ+μ− decay from the combined analysis of CMS and LHCb data. Nature 2015, 522, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Aaboud, M.; Aad, G.; Abbott, B.; Abbott, D.C.; Abdinov, O.; Abeloos, B.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; et al. Study of the rare decays of Bs0 and B0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector. J. High Energy Phys. 2019, 4, 098. [Google Scholar] [CrossRef] [Green Version]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Brandstetter, J.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Flechl, M.; et al. Measurement of properties of Bs0→μ+μ− decays and search for B0→μ+μ− with the CMS experiment. J. High Energy Phys. 2020, 4, 188. [Google Scholar] [CrossRef]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; et al. Measurement of the Bs0→μ+μ− branching fraction and effective lifetime and search for B0→μ+μ− decays. Phys. Rev. Lett. 2017, 118, 191801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combination of the ATLAS, CMS and LHCb Results on the B(s)0→μ+μ− Decays. 2020. Available online: https://inspirehep.net/literature/1811760 (accessed on 14 September 2021).
- Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. Analysis of Neutral B-Meson Decays into Two Muons. arXiv 2021, arXiv:hep-ex/2108.09284. [Google Scholar]
- Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. Measurement of the Bs0→μ+μ− decay properties and search for the B0→μ+μ− and Bs0→μ+μ−γ decays. arXiv 2021, arXiv:hep-ex/2108.09283. [Google Scholar]
- Buras, A.J.; Girrbach, J.; Guadagnoli, D.; Isidori, G. On the Standard Model prediction for BR(Bs,d to mu+ mu-). Eur. Phys. J. C 2012, 72, 2172. [Google Scholar] [CrossRef] [Green Version]
- Bobeth, C.; Gorbahn, M.; Hermann, T.; Misiak, M.; Stamou, E.; Steinhauser, M. Bs,d→l+l− in the Standard Model with Reduced Theoretical Uncertainty. Phys. Rev. Lett. 2014, 112, 101801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobeth, C.; Gorbahn, M.; Stamou, E. Electroweak Corrections to Bs,d→ℓ+ℓ−. Phys. Rev. D 2014, 89, 034023. [Google Scholar] [CrossRef] [Green Version]
- Hermann, T.; Misiak, M.; Steinhauser, M. Three-loop QCD corrections to Bs→μ+μ−. J. High Energy Phys. 2013, 12, 097. [Google Scholar] [CrossRef] [Green Version]
- Yennie, D.R.; Frautschi, S.C.; Suura, H. The infrared divergence phenomena and high-energy processes. Ann. Phys. 1961, 13, 379–452. [Google Scholar] [CrossRef]
- Weinberg, S. Infrared photons and gravitons. Phys. Rev. 1965, 140, B516–B524. [Google Scholar] [CrossRef]
- Davidson, N.; Przedzinski, T.; Was, Z. PHOTOS interface in C++: Technical and Physics Documentation. Comput. Phys. Commun. 2016, 199, 86–101. [Google Scholar] [CrossRef] [Green Version]
- Beneke, M.; Bobeth, C.; Szafron, R. Enhanced electromagnetic correction to the rare B-meson decay Bs,d→μ+μ−. Phys. Rev. Lett. 2018, 120, 011801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beneke, M.; Bobeth, C.; Szafron, R. Power-enhanced leading-logarithmic QED corrections to Bq→μ+μ−. J. High Energy Phys. 2019, 10, 232. [Google Scholar] [CrossRef] [Green Version]
- Dunietz, I.; Fleischer, R.; Nierste, U. In pursuit of new physics with Bs decays. Phys. Rev. D 2001, 63, 114015. [Google Scholar] [CrossRef] [Green Version]
- De Bruyn, K.; Fleischer, R.; Knegjens, R.; Koppenburg, P.; Merk, M.; Tuning, N. Branching Ratio Measurements of Bs Decays. Phys. Rev. D 2012, 86, 014027. [Google Scholar] [CrossRef] [Green Version]
- Descotes-Genon, S.; Virto, J. Time dependence in B→Vℓℓ decays. J. High Energy Phys. 2015, 4, 045, Erratum in 2015, 7, 049. [Google Scholar] [CrossRef] [Green Version]
- De Bruyn, K.; Fleischer, R.; Knegjens, R.; Koppenburg, P.; Merk, M.; Pellegrino, A.; Tuning, N. Probing New Physics via the Bs0→μ+μ− Effective Lifetime. Phys. Rev. Lett. 2012, 109, 041801. [Google Scholar] [CrossRef] [Green Version]
- Dettori, F.; Guadagnoli, D. On the model dependence of measured Bs-meson branching fractions. Phys. Lett. B 2018, 784, 96–100. [Google Scholar] [CrossRef]
- Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; et al. Direct CP, Lepton Flavor and Isospin Asymmetries in the Decays B→K(∗)ℓ+ℓ−. Phys. Rev. Lett. 2009, 102, 091803. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Abe, K.; Abe, R.; Adachi, I.; Ahn, B.S.; Aihara, H.; Akatsu, M.; Asano, Y.; Aso, T.; Aulchenko, V.; et al. Observation of the decay B→Kℓ+ℓ−. Phys. Rev. Lett. 2002, 88, 021801. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, A.; Abe, K.; Abe, K.; Abe, T.; Adachi, I.; Ahn, B.S.; Aihara, H.; Akai, K.; Akatsu, M.; Akemoto, M.; et al. Observation of B —> K* l+ l-. Phys. Rev. Lett. 2003, 91, 261601. [Google Scholar] [CrossRef]
- Wei, J.-T.; Chang, P.; Adachi, I.; Aihara, H.; Aulchenko, V.; Aushev, T.; Bakich, A.M.; Balagura, V.; Barberio, E.; Bondar, A.; et al. Measurement of the Differential Branching Fraction and Forward-Backword Asymmetry for B→K(∗)ℓ+ℓ−. Phys. Rev. Lett. 2009, 103, 171801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; et al. Observation of the Baryonic Flavor-Changing Neutral Current Decay Λb→Λμ+μ−. Phys. Rev. Lett. 2011, 107, 201802. [Google Scholar] [CrossRef] [Green Version]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; et al. Angular analysis of the decay B0→K∗0μ+μ− from pp collisions at =8 TeV. Phys. Lett. B 2016, 753, 424–448. [Google Scholar] [CrossRef]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; et al. Differential branching fractions and isospin asymmetries of B→K(∗)μ+μ− decays. J. High Energy Phys. 2014, 6, 133. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; et al. Measurement of CP asymmetries in the decays B0→K∗0μ+μ− and B+→K+μ+μ−. J. High Energy Phys. 2014, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; et al. First observations of the rare decays B+→K+π+π−μ+μ− and B+→ϕK+μ+μ−. J. High Energy Phys. 2014, 10, 064. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; et al. Study of the rare Bs0 and B0 decays into the π+π−μ+μ− final state. Phys. Lett. B 2015, 743, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; et al. Differential branching fraction and angular analysis of Λb0→Λμ+μ− decays. J. High Energy Phys. 2015, 6, 115, Erratum in 2018, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; et al. Angular analysis and differential branching fraction of the decay Bs0→ϕμ+μ−. J. High Energy Phys. 2015, 9, 179. [Google Scholar] [CrossRef]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; et al. First measurement of the differential branching fraction and CP asymmetry of the B±→π±μ+μ− decay. J. High Energy Phys. 2015, 10, 034. [Google Scholar] [CrossRef]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; et al. Differential branching fraction and angular moments analysis of the decay B0→K+π−μ+μ− in the (1430)0 region. J. High Energy Phys. 2016, 12, 065. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albicocco, P.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; et al. Evidence for the decay BS0→∗0μ+μ−. J. High Energy Phys. 2018, 7, 020. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, J.; Gligorov, V.V.; Raven, G.; Tolk, S. Performance of the LHCb High Level Trigger in 2012. J. Phys. Conf. Ser. 2014, 513, 012001. [Google Scholar] [CrossRef] [Green Version]
- Baptista Leite, J.; Bediaga, I.; Cruz Torresy, M.; De Miranda, J.M.; dos Reis, A.C.; Gomesa, A.; Massafferri, A.; Torres Machado, D.; Amato, S.; De Paula, L.; et al. LHCb Upgrade GPU High Level Trigger Technical Design Report; Technical Report; CERN: Geneva, Switzerland, 2020. [Google Scholar]
- LHCb Trigger and Online Upgrade Technical Design Report; Technical Report; 2014. Available online: https://cds.cern.ch/record/1701361 (accessed on 14 September 2021).
- Bharucha, A.; Straub, D.M.; Zwicky, R. B→Vℓ+ℓ− in the Standard Model from light cone sum rules. J. High Energy Phys. 2016, 8, 098. [Google Scholar] [CrossRef] [Green Version]
- Horgan, R.R.; Liu, Z.; Meinel, S.; Wingate, M. Lattice QCD calculation of form factors describing the rare decays B→K∗ℓ+ℓ− and Bs→ϕℓ+ℓ−. Phys. Rev. D 2014, 89, 094501. [Google Scholar] [CrossRef] [Green Version]
- Straub, D.M. flavio: A Python package for flavor and precision phenomenology in the Standard Model and beyond. arXiv 2018, arXiv:1810.08132. [Google Scholar]
- Horgan, R.R.; Liu, Z.; Meinel, S.; Wingate, M. Rare B decays using lattice QCD form factors. In Proceedings of the 32nd International Symposium on Lattice Field Theory—PoS(LATTICE2014), New York, NY, USA, 23–28 June 2014. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Beteta, C.A.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. Branching fraction measurements of the rare Bs0→ϕμ+μ− and Bs0→f2′(1525)μ+μ− decays. Phys. Rev. Lett. 2021, 127, 151801. [Google Scholar] [CrossRef]
- Bobeth, C.; Hiller, G.; van Dyk, D. General analysis of →(∗)ℓ+ℓ− decays at low recoil. Phys. Rev. D 2013, 87, 034016. [Google Scholar] [CrossRef] [Green Version]
- Beneke, M.; Feldmann, T. Symmetry breaking corrections to heavy to light B meson form factors at large recoil. Nucl. Phys. B 2001, 592, 3–34. [Google Scholar] [CrossRef] [Green Version]
- Descotes-Genon, S.; Matias, J.; Ramon, M.; Virto, J. Implications from clean observables for the binned analysis of B−>K∗μ+μ− at large recoil. J. High Energy Phys. 2013, 1, 048. [Google Scholar] [CrossRef] [Green Version]
- Bobeth, C.; Hiller, G.; van Dyk, D. The Benefits of −>∗l+l− Decays at Low Recoil. J. High Energy Phys. 2010, 7, 098. [Google Scholar] [CrossRef] [Green Version]
- Descotes-Genon, S.; Hurth, T.; Matias, J.; Virto, J. Optimizing the basis of B→K∗ll observables in the full kinematic range. J. High Energy Phys. 2013, 5, 137. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, C.; Lepage, G.P.; Monahan, C.; Na, H.; Shigemitsu, J. Rare decay B→Kℓ+ℓ− form factors from lattice QCD. Phys. Rev. D 2013, 88, 054509, Erratum in 2013, 88, 079901. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.A.; Bazavov, A.; Bernard, C.; Bouchard, C.M.; DeTar, C.; Du, D.; El-Khadra, A.X.; Foley, J.; Freeland, E.D.; Gámiz, E.; et al. B→Kl+l− Decay Form Factors from Three-Flavor Lattice QCD. Phys. Rev. D 2016, 93, 025026. [Google Scholar] [CrossRef] [Green Version]
- Dalgic, E.; Gray, A.; Wingate, M.; Davies, C.T.H.; Lepage, G.P.; Shigemitsu, J. B meson semileptonic form factors from unquenched lattice QCD. Phys. Rev. D 2006, 73, 074502, Erratum in 2007, 75, 119906. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.A.; Bernard, C.; DeTar, C.; Di Pierro, M.; El-Khadra, A.X.; Evans, R.T.; Freeland, E.D.; Gamiz, E.; Gottlieb, S.; Heller, U.M.; et al. The B→πℓν semileptonic form factor from three-flavor lattice QCD: A Model-independent determination of |Vub|. Phys. Rev. D 2009, 79, 054507. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.A.; Bazavov, A.; Bernard, C.; Bouchard, C.M.; DeTar, C.; Du, D.; El-Khadra, A.X.; Foley, J.; Freeland, E.D.; Gámiz, E.; et al. |Vub| from B→πℓν decays and (2+1)-flavor lattice QCD. Phys. Rev. D 2015, 92, 014024. [Google Scholar] [CrossRef] [Green Version]
- Flynn, J.M.; Izubuchi, T.; Kawanai, T.; Lehner, C.; Soni, A.; Van de Water, R.S.; Witzel, O. B→πℓν and Bs→Kℓν form factors and |Vub| from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks. Phys. Rev. D 2015, 91, 074510. [Google Scholar] [CrossRef] [Green Version]
- Colquhoun, B.; Dowdall, R.J.; Koponen, J.; Davies, C.T.H.; Lepage, G.P. B→πℓν at zero recoil from lattice QCD with physical u/d quarks. Phys. Rev. D 2016, 93, 034502. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.A.; Bazavov, A.; Bernard, C.; Bouchard, C.M.; DeTar, C.; Du, D.; El-Khadra, A.X.; Freeland, E.D.; Gámiz, E.; Gottlieb, S.; et al. B→πℓℓ form factors for new-physics searches from lattice QCD. Phys. Rev. Lett. 2015, 115, 152002. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, C.M.; Lepage, G.P.; Monahan, C.; Na, H.; Shigemitsu, J. Bs→Kℓν form factors from lattice QCD. Phys. Rev. D 2014, 90, 054506. [Google Scholar] [CrossRef] [Green Version]
- Khodjamirian, A.; Rusov, A.V. Bs→Kℓνℓ and B(s)→π(K)ℓ+ℓ− decays at large recoil and CKM matrix elements. J. High Energy Phys. 2017, 8, 112. [Google Scholar] [CrossRef]
- Gubernari, N.; Kokulu, A.; van Dyk, D. B→P and B→V Form Factors from B-Meson Light-Cone Sum Rules beyond Leading Twist. J. High Energy Phys. 2019, 1, 150. [Google Scholar] [CrossRef] [Green Version]
- Descotes-Genon, S.; Khodjamirian, A.; Virto, J. Light-cone sum rules for B→Kπ form factors and applications to rare decays. J. High Energy Phys. 2019, 12, 083. [Google Scholar] [CrossRef] [Green Version]
- Altmannshofer, W.; Ball, P.; Bharucha, A.; Buras, A.J.; Straub, D.M.; Wick, M. Symmetries and Asymmetries of B→K∗μ+μ− Decays in the Standard Model and Beyond. J. High Energy Phys. 2009, 1, 019. [Google Scholar] [CrossRef] [Green Version]
- Horgan, R.R.; Liu, Z.; Meinel, S.; Wingate, M. Calculation of B0→K∗0μ+μ− and Bs0→ϕμ+μ− observables using form factors from lattice QCD. Phys. Rev. Lett. 2014, 112, 212003. [Google Scholar] [CrossRef] [Green Version]
- Flynn, J.; Jüttner, A.; Kawanai, T.; Lizarazo, E.; Witzel, O. Hadronic form factors for rare semileptonic B decays. PoS 2016, LATTICE2015, 345. [Google Scholar]
- Flynn, J.; Izubuchi, T.; Juttner, A.; Kawanai, T.; Lehner, C.; Lizarazo, E.; Soni, A.; Tsang, J.T.; Witzel, O. Form factors for semileptonic B decays. In Proceedings of the 34th annual International Symposium on Lattice Field Theory, Southampton, UK, 24–30 July 2016. [Google Scholar] [CrossRef] [Green Version]
- Lizarazo, E.; Witzel, O. Non-perturbative determinations of B-meson decay constants and semileptonic form factors. In Proceedings of the 38th International Conference on High Energy Physics (ICHEP 2016), Chicago, IL, USA, 3–10 August 2016. [Google Scholar] [CrossRef] [Green Version]
- Gubernari, N.; van Dyk, D.; Virto, J. Non-local matrix elements in B(s)→{K(∗),ϕ}ℓ+ℓ−. J. High Energy Phys. 2021, 2, 088. [Google Scholar] [CrossRef]
- Grinstein, B.; Pirjol, D. Exclusive rare B→K∗ℓ+ℓ− decays at low recoil: Controlling the long-distance effects. Phys. Rev. D 2004, 70, 114005. [Google Scholar] [CrossRef] [Green Version]
- Beylich, M.; Buchalla, G.; Feldmann, T. Theory of B→K(∗)ℓ+ℓ− decays at high q2: OPE and quark-hadron duality. Eur. Phys. J. C 2011, 71, 1635. [Google Scholar] [CrossRef] [Green Version]
- Asatrian, H.M.; Greub, C.; Virto, J. Exact NLO matching and analyticity in b→sℓℓ. J. High Energy Phys. 2020, 4, 012. [Google Scholar] [CrossRef] [Green Version]
- Beneke, M.; Feldmann, T.; Seidel, D. Systematic approach to exclusive B→Vl+l−, Vγ decays. Nucl. Phys. B 2001, 612, 25–58. [Google Scholar] [CrossRef] [Green Version]
- Beneke, M.; Feldmann, T.; Seidel, D. Exclusive radiative and electroweak b→d and b→s penguin decays at NLO. Eur. Phys. J. C 2005, 41, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Lyon, J.; Zwicky, R. Resonances gone topsy turvy—The charm of QCD or new physics in b→sℓ+ℓ−? arXiv 2014, arXiv:hep-ph/1406.0566. [Google Scholar]
- Khodjamirian, A.; Mannel, T.; Pivovarov, A.A.; Wang, Y.M. Charm-loop effect in B→K(∗)ℓ+ℓ− and B→K∗γ. J. High Energy Phys. 2010, 9, 089. [Google Scholar] [CrossRef] [Green Version]
- Jäger, S.; Martin Camalich, J. On B→Vℓℓ at small dilepton invariant mass, power corrections, and new physics. J. High Energy Phys. 2013, 5, 043. [Google Scholar] [CrossRef] [Green Version]
- Ciuchini, M.; Fedele, M.; Franco, E.; Mishima, S.; Paul, A.; Silvestrini, L.; Valli, M. B→K∗ℓ+ℓ− decays at large recoil in the Standard Model: A theoretical reappraisal. J. High Energy Phys. 2016, 6, 116. [Google Scholar] [CrossRef] [Green Version]
- Hurth, T.; Mahmoudi, F.; Neshatpour, S. On the anomalies in the latest LHCb data. Nucl. Phys. B 2016, 909, 737–777. [Google Scholar] [CrossRef]
- Hurth, T.; Mahmoudi, F.; Neshatpour, S. Implications of the new LHCb angular analysis of B→K∗μ+μ−: Hadronic effects or new physics? Phys. Rev. D 2020, 102, 055001. [Google Scholar] [CrossRef]
- Bobeth, C.; Chrzaszcz, M.; van Dyk, D.; Virto, J. Long-distance effects in B→K∗ℓℓ from analyticity. Eur. Phys. J. C 2018, 78, 451. [Google Scholar] [CrossRef] [Green Version]
- Khodjamirian, A.; Mannel, T.; Wang, Y.M. B→Kℓ+ℓ− decay at large hadronic recoil. J. High Energy Phys. 2013, 2, 010. [Google Scholar] [CrossRef] [Green Version]
- Braß, S.; Hiller, G.; Nisandzic, I. Zooming in on B→K∗ℓℓ decays at low recoil. Eur. Phys. J. C 2017, 77, 16. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; et al. Measurement of the phase difference between short- and long-distance amplitudes in the B+→K+μ+μ− decay. Eur. Phys. J. C 2017, 77, 161. [Google Scholar] [CrossRef] [Green Version]
- Blake, T.; Egede, U.; Owen, P.; Petridis, K.A.; Pomery, G. An empirical model to determine the hadronic resonance contributions to 0→∗0μ+μ− transitions. Eur. Phys. J. C 2018, 78, 453. [Google Scholar] [CrossRef] [PubMed]
- Arbey, A.; Hurth, T.; Mahmoudi, F.; Neshatpour, S. Hadronic and New Physics Contributions to b→s Transitions. Phys. Rev. D 2018, 98, 095027. [Google Scholar] [CrossRef]
- Hofer, L.; Matias, J. Exploiting the symmetries of P and S wave for B →K∗μ+μ−. J. High Energy Phys. 2015, 9, 104. [Google Scholar] [CrossRef]
- Bobeth, C.; Hiller, G.; Piranishvili, G. CP Asymmetries in bar B→∗(→π)ℓ and Untagged s, Bs→ϕ(→K+K−)ℓ Decays at NLO. J. High Energy Phys. 2008, 7, 106. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; et al. Differential branching fraction and angular analysis of the decay B0→K∗0μ+μ−. J. High Energy Phys. 2013, 8, 131. [Google Scholar] [CrossRef] [Green Version]
- Gratrex, J.; Hopfer, M.; Zwicky, R. Generalised helicity formalism, higher moments and the B→KJK(→Kπ)1ℓ2 angular distributions. Phys. Rev. D 2016, 93, 054008. [Google Scholar] [CrossRef] [Green Version]
- Kruger, F.; Matias, J. Probing new physics via the transverse amplitudes of B0→K∗0(→K−π+)l+l− at large recoil. Phys. Rev. D 2005, 71, 094009. [Google Scholar] [CrossRef] [Green Version]
- Matias, J.; Mescia, F.; Ramon, M.; Virto, J. Complete Anatomy of d−>∗0(−>Kπ)l+l− and its angular distribution. J. High Energy Phys. 2012, 4, 104. [Google Scholar] [CrossRef] [Green Version]
- Aubert, B.; Barate, R.; Bona, M.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; et al. Measurements of branching fractions, rate asymmetries, and angular distributions in the rare decays B→Kℓ+ℓ− and B→K∗ℓ+ℓ−. Phys. Rev. D 2006, 73, 092001. [Google Scholar] [CrossRef] [Green Version]
- Lees, J.P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D.N.; Kerth, L.T.; Kolomensky, Y.G.; et al. Measurement of angular asymmetries in the decays B→K∗ℓ+ℓ−. Phys. Rev. D 2016, 93, 052015. [Google Scholar] [CrossRef] [Green Version]
- Wehle, S.; Niebuhr, C.; Yashchenko, S.; Adachi, I.; Aihara, H.; Al Said, S.; Asner, D.M.; Aulchenko, V.; Aushev, T.; Ayad, R.; et al. Lepton-Flavor-Dependent Angular Analysis of B→K∗ℓ+ℓ−. Phys. Rev. Lett. 2017, 118, 111801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; et al. Measurements of the Angular Distributions in the Decays B→K(∗)μ+μ− at CDF. Phys. Rev. Lett. 2012, 108, 081807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; Abreu, H.; et al. Angular analysis of Bd0→K∗μ+μ− decays in pp collisions at = 8 TeV with the ATLAS detector. J. High Energy Phys. 2018, 10, 047. [Google Scholar] [CrossRef] [Green Version]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; et al. Measurement of angular parameters from the decay B0→K∗0μ+μ− in proton-proton collisions at = 8 TeV. Phys. Lett. B 2018, 781, 517–541. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; et al. Angular analysis of the decay B+→ K+μ+μ− in proton-proton collisions at = 8 TeV. Phys. Rev. D 2018, 98, 112011. [Google Scholar] [CrossRef] [Green Version]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; et al. Angular analysis of the decay B+→ K∗(892)+μ+μ− in proton-proton collisions at = 8 TeV. J. High Energy Phys. 2021, 4, 124. [Google Scholar] [CrossRef]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; et al. Angular analysis of charged and neutral B→Kμ+μ− decays. J. High Energy Phys. 2014, 5, 082. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; et al. Angular analysis of the B0→K∗0μ+μ− decay using 3 fb−1 of integrated luminosity. J. High Energy Phys. 2016, 2, 104. [Google Scholar] [CrossRef]
- Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. Measurement of CP-Averaged Observables in the B0→K∗0μ+μ− Decay. Phys. Rev. Lett. 2020, 125, 011802. [Google Scholar] [CrossRef] [PubMed]
- Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. Angular Analysis of the B+→K∗+μ+μ− Decay. Phys. Rev. Lett. 2021, 126, 161802. [Google Scholar] [CrossRef] [PubMed]
- Hurth, T.; Langenbruch, C.; Mahmoudi, F. Direct determination of Wilson coefficients using B0→K∗0μ+μ− decays. J. High Energy Phys. 2017, 11, 176. [Google Scholar] [CrossRef] [Green Version]
- Chrzaszcz, M.; Mauri, A.; Serra, N.; Silva Coutinho, R.; van Dyk, D. Prospects for disentangling long- and short-distance effects in the decays B→K∗μ+μ−. J. High Energy Phys. 2019, 10, 236. [Google Scholar] [CrossRef] [Green Version]
- Mauri, A.; Serra, N.; Silva Coutinho, R. Towards establishing lepton flavor universality violation in →∗ℓ+ℓ− decays. Phys. Rev. D 2019, 99, 013007. [Google Scholar] [CrossRef] [Green Version]
- Altmannshofer, W.; Yavin, I. Predictions for lepton flavor universality violation in rare B decays in models with gauged Lμ − Lτ. Phys. Rev. D 2015, 92, 075022. [Google Scholar] [CrossRef] [Green Version]
- Capdevila, B.; Descotes-Genon, S.; Matias, J.; Virto, J. Assessing lepton-flavor non-universality from B→K∗ℓℓ angular analyses. J. High Energy Phys. 2016, 10, 075. [Google Scholar] [CrossRef] [Green Version]
- Serra, N.; Silva Coutinho, R.; van Dyk, D. Measuring the breaking of lepton flavor universality in B→K∗ℓ+ℓ−. Phys. Rev. D 2017, 95, 035029. [Google Scholar] [CrossRef] [Green Version]
- Bobeth, C.; Hiller, G.; Piranishvili, G. Angular distributions of →ℓ+ℓ− decays. J. High Energy Phys. 2007, 12, 040. [Google Scholar] [CrossRef] [Green Version]
- Hiller, G.; Kruger, F. More model-independent analysis of b→s processes. Phys. Rev. D 2004, 69, 074020. [Google Scholar] [CrossRef] [Green Version]
- Bordone, M.; Isidori, G.; Pattori, A. On the Standard Model predictions for RK and RK*. Eur. Phys. J. C 2016, 76, 440. [Google Scholar] [CrossRef] [Green Version]
- Isidori, G.; Nabeebaccus, S.; Zwicky, R. QED corrections in →ℓ+ℓ− at the double-differential level. J. High Energy Phys. 2020, 12, 104. [Google Scholar] [CrossRef]
- Lees, J.P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D.N.; Kerth, L.T.; et al. Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays B→K(∗)l+l−. Phys. Rev. D 2012, 86, 032012. [Google Scholar] [CrossRef] [Green Version]
- Wehle, S.; Adachi, I.; Adamczyk, K.; Aihara, H.; Asner, D.M.; Atmacan, H.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; et al. Test of Lepton-Flavor Universality in B→K∗ℓ+ℓ− Decays at Belle. Phys. Rev. Lett. 2021, 126, 161801. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, S.; Sandilya, S.; Trabelsi, K.; Giri, A.; Aihara, H.; Al Said, S.; Asner, D.M.; Atmacan, H.; Aulchenko, V.; Aushev, T.; et al. Test of lepton flavor universality and search for lepton flavor violation in B→Kℓℓ decays. J. High Energy Phys. 2021, 3, 105. [Google Scholar] [CrossRef]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; et al. Test of lepton universality with B0→K∗0ℓ+ℓ− decays. J. High Energy Phys. 2017, 8, 055. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Aidala, C.; Ajaltouni, Z.; Akar, S.; Albicocco, P.; Albrecht, J.; Alessio, F.; et al. Search for lepton universality violation in B+→K+ℓ+ℓ− decays. Phys. Rev. Lett. 2019, 122, 191801. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. Test of lepton universality in beauty-quark decays. arXiv 2021, arXiv:hep-ex/2103.11769. [Google Scholar]
- Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. Test of lepton universality with Λb0→pK−ℓ+ℓ− decays. J. High Energy Phys. 2020, 5, 040. [Google Scholar] [CrossRef]
- Bediaga, I.; Cruz Torres, M.; De Miranda, J.M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A.C.; Soares Lavra, l.; Tourinho Jadallah Aoude, R.; Amato, S.; et al. Physics case for an LHCb Upgrade II—Opportunities in flavor physics, and beyond, in the HL-LHC era. arXiv 2018, arXiv:1808.08865. [Google Scholar]
- Kou, E.; Urquijo, P.; Altmannshofer, W.; Beaujean, F.; Bell, G.; Bemeke, M.; Bigi, I.I.; Bishara, F.; Blanke, M.; Bobeth, C.; et al. The Belle II Physics Book. Prog. Theor. Exp. Phys. 2019, 2019, 123C01, Erratum in 2020, 2020, 029201. [Google Scholar] [CrossRef]
- Glashow, S.L.; Guadagnoli, D.; Lane, K. Lepton Flavor Violation in B Decays? Phys. Rev. Lett. 2015, 114, 091801. [Google Scholar] [CrossRef] [Green Version]
- Celis, A.; Fuentes-Martin, J.; Jung, M.; Serodio, H. Family nonuniversal Z’ models with protected flavor-changing interactions. Phys. Rev. D 2015, 92, 015007. [Google Scholar] [CrossRef] [Green Version]
- Alonso, R.; Grinstein, B.; Martin Camalich, J. Lepton universality violation and lepton flavor conservation in B-meson decays. J. High Energy Phys. 2015, 10, 184. [Google Scholar] [CrossRef] [Green Version]
- Guadagnoli, D.; Lane, K. Charged-Lepton Mixing and Lepton Flavor Violation. Phys. Lett. B 2015, 751, 54–58. [Google Scholar] [CrossRef]
- Guadagnoli, D.; Melikhov, D.; Reboud, M. More Lepton Flavor Violating Observables for LHCb’s Run 2. Phys. Lett. B 2016, 760, 442–447. [Google Scholar] [CrossRef] [Green Version]
- Hiller, G.; Schmaltz, M. RK and future b→sℓℓ physics beyond the standard model opportunities. Phys. Rev. D 2014, 90, 054014. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, B.; Datta, A.; London, D.; Shivashankara, S. Simultaneous Explanation of the RK and R(D(∗)) Puzzles. Phys. Lett. B 2015, 742, 370–374. [Google Scholar] [CrossRef] [Green Version]
- Feruglio, F.; Paradisi, P.; Pattori, A. Revisiting Lepton Flavor Universality in B Decays. Phys. Rev. Lett. 2017, 118, 011801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feruglio, F.; Paradisi, P.; Pattori, A. On the Importance of Electroweak Corrections for B Anomalies. J. High Energy Phys. 2017, 9, 061. [Google Scholar] [CrossRef]
- Crivellin, A.; Hofer, L.; Matias, J.; Nierste, U.; Pokorski, S.; Rosiek, J. Lepton-flavor violating B decays in generic Z′ models. Phys. Rev. D 2015, 92, 054013. [Google Scholar] [CrossRef] [Green Version]
- Hiller, G.; Loose, D.; Schönwald, K. Leptoquark Flavor Patterns \& B Decay Anomalies. J. High Energy Phys. 2016, 12, 027. [Google Scholar] [CrossRef]
- Bečirević, D.; Košnik, N.; Sumensari, O.; Zukanovich Funchal, R. Palatable Leptoquark Scenarios for Lepton Flavor Violation in Exclusive b→sℓ1ℓ2 modes. J. High Energy Phys. 2016, 11, 035. [Google Scholar] [CrossRef]
- Bečirević, D.; Sumensari, O.; Zukanovich Funchal, R. Lepton flavor violation in exclusive b→s decays. Eur. Phys. J. C 2016, 76, 134. [Google Scholar] [CrossRef] [Green Version]
- Borsato, M.; Gligorov, V.V.; Guadagnoli, D.; Martinez Santos, D.; Sumensari, O. Effective-field-theory arguments for pursuing lepton-flavor-violating K decays at LHCb. Phys. Rev. D 2019, 99, 055017. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Aidala, C.; Ajaltouni, Z.; Akar, S.; Albicocco, P.; Albrecht, J.; Alessio, F.; et al. Search for the lepton-flavor-violating decays Bs0→τ±μ∓ and B0→τ±μ∓. Phys. Rev. Lett. 2019, 123, 211801. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. Search for the lepton flavor violating decay B+→K+μ−τ+ using decays. J. High Energy Phys. 2020, 6, 129. [Google Scholar] [CrossRef]
- Dettori, F.; Guadagnoli, D.; Reboud, M. Bs0→μ+μ−γ from Bs0→μ+μ−. Phys. Lett. B 2017, 768, 163–167. [Google Scholar] [CrossRef]
- Eilam, G.; Lu, C.D.; Zhang, D.X. Radiative dileptonic decays of B mesons. Phys. Lett. B 1997, 391, 461–464. [Google Scholar] [CrossRef] [Green Version]
- Aliev, T.M.; Ozpineci, A.; Savci, M. B(q) —> lepton+ lepton- gamma decays in light cone QCD. Phys. Rev. D 1997, 55, 7059–7066. [Google Scholar] [CrossRef] [Green Version]
- Guadagnoli, D.; Reboud, M.; Zwicky, R. Bs0→ℓ+ℓ−γ as a test of lepton flavor universality. J. High Energy Phys. 2017, 11, 184. [Google Scholar] [CrossRef] [Green Version]
- Kozachuk, A.; Melikhov, D.; Nikitin, N. Rare FCNC radiative leptonic Bs,d→γl+l− decays in the standard model. Phys. Rev. D 2018, 97, 053007. [Google Scholar] [CrossRef] [Green Version]
- Kane, C.; Lehner, C.; Meinel, S.; Soni, A. Radiative leptonic decays on the lattice. In Proceedings of the 37th International Symposium on Lattice Field Theory, Wuhan, China, 16–22 June 2019. [Google Scholar] [CrossRef]
- Beneke, M.; Bobeth, C.; Wang, Y.M. Bd,s→γℓ decay with an energetic photon. J. High Energy Phys. 2020, 12, 148. [Google Scholar] [CrossRef]
- Pullin, B.; Zwicky, R. Radiative Decays of Heavy-light Mesons and the Decay Constants. arXiv 2021, arXiv:hep-ph/2106.13617. [Google Scholar]
- Janowski, T.; Pullin, B.; Zwicky, R. Charged and Neutral u,d,s→γ Form Factors from Light Cone Sum Rules at NLO. arXiv 2021, arXiv:hep-ph/2106.13616. [Google Scholar]
- Albrecht, J.; Stamou, E.; Ziegler, R.; Zwicky, R. Probing flavored Axions in the Tail of Bq→μ+μ−. arXiv 2019, arXiv:hep-ph/1911.05018. [Google Scholar]
- Giusti, D.; Lubicz, V.; Martinelli, G.; Sachrajda, C.T.; Sanfilippo, F.; Simula, S.; Tantalo, N.; Tarantino, C. First lattice calculation of the QED corrections to leptonic decay rates. Phys. Rev. Lett. 2018, 120, 072001. [Google Scholar] [CrossRef] [Green Version]
- Di Carlo, M.; Giusti, D.; Lubicz, V.; Martinelli, G.; Sachrajda, C.T.; Sanfilippo, F.; Simula, S.; Tantalo, N. Light-meson leptonic decay rates in lattice QCD+QED. Phys. Rev. D 2019, 100, 034514. [Google Scholar] [CrossRef] [Green Version]
- Carvunis, A.; Dettori, F.; Gangal, S.; Guadagnoli, D.; Normand, C. On the effective lifetime of Bs→μμγ. arXiv 2021, arXiv:hep-ph/2102.13390. [Google Scholar]
- Melikhov, D.; Nikitin, N. Rare radiative leptonic decays B(d,s) —> l+l- gamma. Phys. Rev. D 2004, 70, 114028. [Google Scholar] [CrossRef] [Green Version]
- Kruger, F.; Sehgal, L.M. Lepton polarization in the decays b —> X(s) mu+ mu- and B —> X(s) tau+ tau-. Phys. Lett. B 1996, 380, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Dubnička, S.; Dubničková, A.Z.; Ivanov, M.A.; Liptaj, A.; Santorelli, P.; Tran, C.T. Study of Bs→ℓ+ℓ−γ decays in covariant quark model. Phys. Rev. D 2019, 99, 014042. [Google Scholar] [CrossRef] [Green Version]
- Capdevila, B.; Crivellin, A.; Descotes-Genon, S.; Hofer, L.; Matias, J. Searching for New Physics with b→sτ+τ− processes. Phys. Rev. Lett. 2018, 120, 181802. [Google Scholar] [CrossRef] [Green Version]
- Lees, J.P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D.N.; Kerth, L.T.; Kolomensky, Y.G.; et al. Search for B+→K+τ+τ− at the BaBar experiment. Phys. Rev. Lett. 2017, 118, 031802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; et al. Measurements of the Semileptonic Decays anti-B —> D l anti-nu and anti-B —> D* l anti-nu Using a Global Fit to D X l anti-nu Final States. Phys. Rev. D 2009, 79, 012002. [Google Scholar] [CrossRef] [Green Version]
- Glattauer, R.; Schwanda, C.; Abdesselam, A.; Adachi, I.; Adamczyk, K.; Aihara, H.; Al Said, S.; Asner, D.M.; Aushev, T.; Ayad, R.; et al. Measurement of the decay B→Dℓνℓ in fully reconstructed events and determination of the Cabibbo-Kobayashi-Maskawa matrix element |Vcb|. Phys. Rev. D 2016, 93, 032006. [Google Scholar] [CrossRef] [Green Version]
- Abdesselam, A.; Adachi, I.; Adamczyk, K.; Aihara, H.; Al Said, S.; Arinstein, K.; Arita, Y.; Asner, D.M.; Aso, T.; Atmacan, H.; et al. Precise determination of the CKM matrix element Vcb with 0→D∗+ℓ−ℓ decays with hadronic tagging at Belle. arXiv 2017, arXiv:hep-ex/1702.01521. [Google Scholar]
- Waheed, E.; Urquijo, P.; Ferlewicz, D.; Adachi, I.; Adamczyk, K.; Aihara, H.; Al Said, S.; Asner, D.M.; Atmacan, H.; Aushev, T.; et al. Measurement of the CKM matrix element |Vcb| from B0→D∗-ℓ+νℓ at Belle. Phys. Rev. D 2019, 100, 052007, Erratum in 2021, 103, 079901. [Google Scholar] [CrossRef] [Green Version]
- Adam, N.E.; Alexander, J.P.; Bebek, C.; Berger, B.E.; Berkelman, K.; Blanc, F.; Boisvert, V.; Cassel, D.G.; Drell, P.S.; Duboscq, J.E.; et al. Determination of the anti-B —> D* l anti-nu decay width and |V(cb)|. Phys. Rev. D 2003, 67, 032001. [Google Scholar] [CrossRef] [Green Version]
- Buras, A. Gauge Theory of Weak Decays; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Amhis, Y.; Banerjee, S.; Ben-Haim, E.; Bernlochner, F.U.; Bona, M.; Bozek, A.; Bozzi, C.; Brodzicka, J.; Chrzaszcz, M.; Dingfelder, J.; et al. Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018. Eur. Phys. J. C 2021, 81, 226. [Google Scholar] [CrossRef]
- Bordone, M.; Jung, M.; van Dyk, D. Theory determination of →D(∗)ℓ− form factors at O(1/mc2). Eur. Phys. J. C 2020, 80, 74. [Google Scholar] [CrossRef]
- Bordone, M.; Gubernari, N.; van Dyk, D.; Jung, M. Heavy-Quark expansion for s→Ds(∗) form factors and unitarity bounds beyond the SU(3)F limit. Eur. Phys. J. C 2020, 80, 347. [Google Scholar] [CrossRef]
- Lees, J.P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D.N.; Kerth, L.T.; et al. Evidence for an excess of →D(∗)τ−τ decays. Phys. Rev. Lett. 2012, 109, 101802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lees, J.P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D.N.; Kerth, L.T.; Kolomensky, Y.G.; et al. Measurement of an Excess of →D(∗)τ−τ Decays and Implications for Charged Higgs Bosons. Phys. Rev. D 2013, 88, 072012. [Google Scholar] [CrossRef]
- Huschle, M.; Kuhr, T.; Heck, M.; Goldenzweig, P.; Abdesselam, A.; Adachi, I.; Adamczyk, K.; Aihara, H.; Al Said, S.; Arinstein, K.; et al. Measurement of the branching ratio of →D(∗)τ−τ relative to →D(∗)ℓ−ℓ decays with hadronic tagging at Belle. Phys. Rev. D 2015, 92, 072014. [Google Scholar] [CrossRef] [Green Version]
- Hirose, S.; Iijima, T.; Adachi, I.; Adamczyk, K.; Aihara, H.; Al Said, S.; Asner, D.M.; Atmacan, H.; Aulchenko, V.; Aushev, T.; et al. Measurement of the τ lepton polarization and R(D∗) in the decay →D∗τ−τ. Phys. Rev. Lett. 2017, 118, 211801. [Google Scholar] [CrossRef] [Green Version]
- Hirose, S.; Iijima, T.; Adachi, I.; Adamczyk, K.; Aihara, H.; Al Said, S.; Asner, D.M.; Atmacan, H.; Aushev, T.; Ayad, R.; et al. Measurement of the τ lepton polarization and R(D∗) in the decay →D∗τ−τ with one-prong hadronic τ decays at Belle. Phys. Rev. D 2018, 97, 012004. [Google Scholar] [CrossRef] [Green Version]
- Caria, G.; Urquijo, P.; Adachi, I.; Aihara, H.; Al Said, S.; Asner, D.M.; Atmacan, H.; Aushev, T.; Babu, V.; Badhrees, I.; et al. Measurement of R(D) and R(D∗) with a semileptonic tagging method. Phys. Rev. Lett. 2020, 124, 161803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; et al. Measurement of the ratio of branching fractions B(0→D∗+τ−τ)/B(0→D∗+μ−μ). Phys. Rev. Lett. 2015, 115, 111803, Erratum in 2015, 115, 159901. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; et al. Measurement of the ratio of the B0→D∗−τ+ντ and B0→D∗−μ+νμ branching fractions using three-prong τ-lepton decays. Phys. Rev. Lett. 2018, 120, 171802. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; et al. Test of Lepton Flavor Universality by the measurement of the B0→D∗−τ+ντ branching fraction using three-prong τ decays. Phys. Rev. D 2018, 97, 072013. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; et al. Measurement of the ratio of branching fractions B(Bc+→J/ψτ+ντ)/B(Bc+→J/ψμ+νμ). Phys. Rev. Lett. 2018, 120, 121801. [Google Scholar] [CrossRef] [Green Version]
- Harrison, J.; Davies, C.T.H.; Lytle, A. Bc→J/ψ form factors for the full q2 range from lattice QCD. Phys. Rev. D 2020, 102, 094518. [Google Scholar] [CrossRef]
- Harrison, J.; Davies, C.T.H.; Lytle, A. R(J/ψ) and →J/ψℓ−ℓ Lepton Flavor Universality Violating Observables from Lattice QCD. Phys. Rev. Lett. 2020, 125, 222003. [Google Scholar] [CrossRef]
- Ligeti, Z.; Tackmann, F.J. Precise predictions for B→Xcτ decay distributions. Phys. Rev. D 2014, 90, 034021. [Google Scholar] [CrossRef] [Green Version]
- Mannel, T.; Rusov, A.V.; Shahriaran, F. Inclusive semitauonic B decays to order O( /mb3). Nucl. Phys. B 2017, 921, 211–224. [Google Scholar] [CrossRef]
- Na, H.; Bouchard, C.M.; Lepage, G.P.; Monahan, C.; Shigemitsu, J. B→Dlν form factors at nonzero recoil and extraction of |Vcb|. Phys. Rev. D 2015, 92, 054510, Erratum in 2016, 93, 119906. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.A.; Bazavov, A.; Bernard, C.; Bouchard, C.M.; DeTar, C.; Du, D.; El-Khadra, A.X.; Foley, J.; Freeland, E.D.; Gámiz, E.; et al. B→Dℓν form factors at nonzero recoil and |Vcb| from 2+1-flavor lattice QCD. Phys. Rev. D 2015, 92, 034506. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.A.; Bazavov, A.; Bernard, C.; Bouchard, C.M.; DeTar, C.; Du, D.; El-Khadra, A.X.; Foley, J.; Freeland, E.D.; Gámiz, E.; et al. Update of |Vcb| from the →D∗ℓ form factor at zero recoil with three-flavor lattice QCD. Phys. Rev. D 2014, 89, 114504. [Google Scholar] [CrossRef] [Green Version]
- Harrison, J.; Davies, C.; Wingate, M. Lattice QCD calculation of the B(s)→ ℓν form factors at zero recoil and implications for |Vcb|. Phys. Rev. D 2018, 97, 054502. [Google Scholar] [CrossRef] [Green Version]
- Faller, S.; Khodjamirian, A.; Klein, C.; Mannel, T. B —> D(*) Form Factors from QCD Light-Cone Sum Rules. Eur. Phys. J. C 2009, 60, 603–615. [Google Scholar] [CrossRef]
- Detmold, W.; Lehner, C.; Meinel, S. Λb→pℓ−ℓ and Λb→Λcℓ−ℓ form factors from lattice QCD with relativistic heavy quarks. Phys. Rev. D 2015, 92, 034503. [Google Scholar] [CrossRef] [Green Version]
- Datta, A.; Kamali, S.; Meinel, S.; Rashed, A. Phenomenology of Λb→Λcττ using lattice QCD calculations. J. High Energy Phys. 2017, 8, 131. [Google Scholar] [CrossRef]
- Kim, C.S.; Lopez-Castro, G.; Tostado, S.L.; Vicente, A. Remarks on the Standard Model predictions for R(D) and R(D∗). Phys. Rev. D 2017, 95, 013003. [Google Scholar] [CrossRef] [Green Version]
- Boyd, C.G.; Grinstein, B.; Lebed, R.F. Precision corrections to dispersive bounds on form factors. Phys. Rev. D 1997, 56, 6895–6911. [Google Scholar] [CrossRef] [Green Version]
- Boyd, C.G.; Grinstein, B.; Lebed, R.F. Constraints on form factors for exclusive semileptonic heavy to light meson decays. Phys. Rev. Lett. 1995, 74, 4603–4606. [Google Scholar] [CrossRef] [Green Version]
- Boyd, C.G.; Grinstein, B.; Lebed, R.F. Model independent extraction of |V(cb)| using dispersion relations. Phys. Lett. B 1995, 353, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Caprini, I. Model independent constraints on the Isgur-Wise function and the Upsilon B anti-B couplings. Phys. Rev. D 1995, 52, 6349–6355. [Google Scholar] [CrossRef]
- Boyd, C.G.; Grinstein, B.; Lebed, R.F. Model independent determinations of anti-B —> D (lepton), D* (lepton) anti-neutrino form factors. Nucl. Phys. B 1996, 461, 493–511. [Google Scholar] [CrossRef]
- Boyd, C.G.; Lebed, R.F. Improved QCD form factor constraints and Lambda(b) —> Lambda(c) lepton anti-neutrino. Nucl. Phys. B 1997, 485, 275–290. [Google Scholar] [CrossRef]
- Caprini, I.; Neubert, M. Improved bounds for the slope and curvature of anti-B —> D(*) lepton anti-neutrino form factors. Phys. Lett. B 1996, 380, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Lellouch, L. Lattice constrained unitarity bounds for anti-B0 —> pi+ lepton- anti-lepton-neutrino decays. Nucl. Phys. B 1996, 479, 353–391. [Google Scholar] [CrossRef] [Green Version]
- Caprini, I. Improved unitarity bounds on the B meson form factors from heavy quark spin symmetry. Phys. Rev. D 1996, 53, 4082–4085. [Google Scholar] [CrossRef]
- Becirevic, D. B —> rho lepton anti-neutrino-lepton form factors. Phys. Rev. D 1996, 54, 6842–6849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becirevic, D. Improved constraints on B —> pi lepton anti-lepton-neutrino form factors. arXiv 1996, arXiv:hep-ph/9603298. [Google Scholar]
- Caprini, I.; Macesanu, C. Unitarity constraints on the B and B* form factors from QCD analyticity and heavy quark spin symmetry. Phys. Rev. D 1996, 54, 5686–5692. [Google Scholar] [CrossRef] [Green Version]
- Boyd, C.G.; Savage, M.J. Analyticity, shapes of semileptonic form factors, and anti-B —> pi lepton anti-neutrino. Phys. Rev. D 1997, 56, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Caprini, I. Effect of upsilon poles on the analyticity constraints for heavy meson form factors. Z. Phys. C 1994, 61, 651–657. [Google Scholar] [CrossRef]
- Isgur, N.; Wise, M.B. Weak Decays of Heavy Mesons in the Static Quark Approximation. Phys. Lett. B 1989, 232, 113–117. [Google Scholar] [CrossRef]
- Isgur, N.; Wise, M.B. Weak transition form factors between heavy mesons. Phys. Lett. B 1990, 237, 527–530. [Google Scholar] [CrossRef]
- Shifman, M.A.; Voloshin, M.B. On Production of d and D* Mesons in B Meson Decays. Sov. J. Nucl. Phys. 1988, 47, 511. [Google Scholar]
- Eichten, E.; Hill, B.R. An Effective Field Theory for the Calculation of Matrix Elements Involving Heavy Quarks. Phys. Lett. B 1990, 234, 511–516. [Google Scholar] [CrossRef]
- Georgi, H. Heavy Quark Effective Field Theory. In Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 91): Perspectives in the Standard Model, Boulder, CO, USA, 2–28 June 1991. [Google Scholar]
- Neubert, M. Heavy quark symmetry. Phys. Rept. 1994, 245, 259–396. [Google Scholar] [CrossRef] [Green Version]
- Bigi, D.; Gambino, P.; Schacht, S. R(D∗), |Vcb|, and the Heavy Quark Symmetry relations between form factors. J. High Energy Phys. 2017, 11, 061. [Google Scholar] [CrossRef] [Green Version]
- Bourrely, C.; Caprini, I.; Lellouch, L. Model-independent description of B —> pi l nu decays and a determination of |V(ub)|. Phys. Rev. D 2009, 79, 013008, Erratum in 2010, 82, 099902. [Google Scholar] [CrossRef]
- Bigi, D.; Gambino, P. Revisiting B→Dℓν. Phys. Rev. D 2016, 94, 094008. [Google Scholar] [CrossRef] [Green Version]
- Bigi, D.; Gambino, P.; Schacht, S. A fresh look at the determination of |Vcb| from B→D∗ℓν. Phys. Lett. B 2017, 769, 441–445. [Google Scholar] [CrossRef]
- Jaiswal, S.; Nandi, S.; Patra, S.K. Extraction of |Vcb| from B→D(∗)ℓνℓ and the Standard Model predictions of R(D(∗)). J. High Energy Phys. 2017, 12, 060. [Google Scholar] [CrossRef] [Green Version]
- Bernlochner, F.U.; Ligeti, Z.; Papucci, M.; Robinson, D.J. Combined analysis of semileptonic B decays to D and D∗: R(D(∗)), |Vcb|, and new physics. Phys. Rev. D 2017, 95, 115008, Erratum in 2018, 97, 059902. [Google Scholar] [CrossRef] [Green Version]
- Bernlochner, F.U.; Ligeti, Z.; Robinson, D.J.; Sutcliffe, W.L. New predictions for Λb→Λc semileptonic decays and tests of heavy quark symmetry. Phys. Rev. Lett. 2018, 121, 202001. [Google Scholar] [CrossRef] [Green Version]
- Bernlochner, F.U.; Ligeti, Z.; Robinson, D.J.; Sutcliffe, W.L. Precise predictions for Λb→Λc semileptonic decays. Phys. Rev. D 2019, 99, 055008. [Google Scholar] [CrossRef] [Green Version]
- Geng, L.S.; Grinstein, B.; Jäger, S.; Martin Camalich, J.; Ren, X.L.; Shi, R.X. Towards the discovery of new physics with lepton universality ratios of b→sℓℓ decays. Phys. Rev. D 2017, 96, 093006. [Google Scholar] [CrossRef] [Green Version]
- Algueró, M.; Capdevila, B.; Crivellin, A.; Descotes-Genon, S.; Masjuan, P.; Matias, J.; Novoa Brunet, M.; Virto, J. Emerging patterns of New Physics with and without Lepton Flavor Universal contributions. Eur. Phys. J. C 2019, 79, 714, Addendum in 2020, 80, 511. [Google Scholar] [CrossRef]
- Alok, A.K.; Dighe, A.; Gangal, S.; Kumar, D. Continuing search for new physics in b→sμμ decays: Two operators at a time. J. High Energy Phys. 2019, 6, 089. [Google Scholar] [CrossRef] [Green Version]
- Ciuchini, M.; Coutinho, A.M.; Fedele, M.; Franco, E.; Paul, A.; Silvestrini, L.; Valli, M. New Physics in b→sℓ+ℓ− confronts new data on Lepton Universality. Eur. Phys. J. C 2019, 79, 719. [Google Scholar] [CrossRef]
- Datta, A.; Kumar, J.; London, D. The B anomalies and new physics in b→se+e−. Phys. Lett. B 2019, 797, 134858. [Google Scholar] [CrossRef]
- Aebischer, J.; Altmannshofer, W.; Guadagnoli, D.; Reboud, M.; Stangl, P.; Straub, D.M. B-decay discrepancies after Moriond 2019. Eur. Phys. J. C 2020, 80, 252. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, K.; Kumar, D.; Sessolo, E.M. Implications for new physics in b→sμμ transitions after recent measurements by Belle and LHCb. Eur. Phys. J. C 2019, 79, 840. [Google Scholar] [CrossRef] [Green Version]
- Ciuchini, M.; Fedele, M.; Franco, E.; Paul, A.; Silvestrini, L.; Valli, M. Lessons from the B0,+→K∗0,+μ+μ− angular analyses. Phys. Rev. D 2021, 103, 015030. [Google Scholar] [CrossRef]
- Hurth, T.; Mahmoudi, F.; Neshatpour, S. Model independent analysis of the angular observables in B0→K∗0μ+μ− and B+→K∗+μ+μ−. Phys. Rev. D 2021, 103, 095020. [Google Scholar] [CrossRef]
- Altmannshofer, W.; Stangl, P. New Physics in Rare B Decays after Moriond 2021. arXiv 2021, arXiv:hep-ph/2103.13370. [Google Scholar]
- Angelescu, A.; Bečirević, D.; Faroughy, D.A.; Jaffredo, F.; Sumensari, O. On the single leptoquark solutions to the B-physics anomalies. arXiv 2021, arXiv:hep-ph/2103.12504. [Google Scholar]
- Cornella, C.; Faroughy, D.A.; Fuentes-Martin, J.; Isidori, G.; Neubert, M. Reading the footprints of the B-meson flavor anomalies. arXiv 2021, arXiv:hep-ph/2103.16558. [Google Scholar]
- Geng, L.S.; Grinstein, B.; Jäger, S.; Li, S.Y.; Martin Camalich, J.; Shi, R.X. Implications of new evidence for lepton universality violation in b→sℓ+ℓ- decays. Phys. Rev. D 2021, 104, 035029. [Google Scholar] [CrossRef]
- Algueró, M.; Capdevila, B.; Descotes-Genon, S.; Matias, J.; Novoa-Brunet, M. b→sℓℓ global fits after Moriond 2021 results. In Proceedings of the 55th Rencontres de Moriond on QCD and High Energy Interactions, Online, 27 March–3 April 2021. [Google Scholar]
- Lancierini, D.; Isidori, G.; Owen, P.; Serra, N. On the significance of new physics in b→sℓ+ℓ− decays. arXiv 2021, arXiv:hep-ph/2104.05631. [Google Scholar]
- Hurth, T.; Mahmoudi, F.; Santos, D.M.; Neshatpour, S. More Indications for Lepton Nonuniversality in b→sℓ+ℓ−. arXiv 2021, arXiv:hep-ph/2104.10058. [Google Scholar]
- Alonso, R.; Grinstein, B.; Martin Camalich, J. SU(2)×U(1) gauge invariance and the shape of new physics in rare B decays. Phys. Rev. Lett. 2014, 113, 241802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catà, O.; Jung, M. Signatures of a nonstandard Higgs boson from flavor physics. Phys. Rev. D 2015, 92, 055018. [Google Scholar] [CrossRef] [Green Version]
- Beaujean, F.; Bobeth, C.; Jahn, S. Constraints on tensor and scalar couplings from B→ and Bs→. Eur. Phys. J. C 2015, 75, 456. [Google Scholar] [CrossRef] [Green Version]
- Altmannshofer, W.; Niehoff, C.; Straub, D.M. Bs→μ+μ− as current and future probe of new physics. J. High Energy Phys. 2017, 5, 076. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, J.; Bernlochner, F.; Kenzie, M.; Reichert, S.; Straub, D.; Tully, A. Future prospects for exploring present day anomalies in flavor physics measurements with Belle II and LHCb. arXiv 2017, arXiv:hep-ph/1709.10308. [Google Scholar]
- Crivellin, A.; Greub, C.; Müller, D.; Saturnino, F. Importance of Loop Effects in Explaining the Accumulated Evidence for New Physics in B Decays with a Vector Leptoquark. Phys. Rev. Lett. 2019, 122, 011805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altmannshofer, W.; Straub, D.M. Cornering New Physics in b→s Transitions. J. High Energy Phys. 2012, 8, 121. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guadagnoli, D. B Discrepancies Hold Their Ground. Symmetry 2021, 13, 1999. https://doi.org/10.3390/sym13111999
Guadagnoli D. B Discrepancies Hold Their Ground. Symmetry. 2021; 13(11):1999. https://doi.org/10.3390/sym13111999
Chicago/Turabian StyleGuadagnoli, Diego. 2021. "B Discrepancies Hold Their Ground" Symmetry 13, no. 11: 1999. https://doi.org/10.3390/sym13111999
APA StyleGuadagnoli, D. (2021). B Discrepancies Hold Their Ground. Symmetry, 13(11), 1999. https://doi.org/10.3390/sym13111999