Gait Asymmetry Comparison between Subjects with and without Nonspecific Chronic Low Back Pain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Setup
2.3. Data Processing
2.4. Data Computation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pengel, L.; Herbert, R.D.; Maher, C.; Refshauge, K.M. Acute low back pain: Systematic review of its prognosis. BMJ 2003, 327, 323. [Google Scholar] [CrossRef] [Green Version]
- Stanton, T.R.; Henschke, N.; Maher, C.; Refshauge, K.; Latimer, J.; McAuley, J. After an Episode of Acute Low Back Pain, Recurrence Is Unpredictable and Not as Common as Previously Thought. Spine 2008, 33, 2923–2928. [Google Scholar] [CrossRef] [Green Version]
- Deyo, R.A.; Dworkin, S.F.; Amtmann, D.; Andersson, G.; Borenstein, D.; Carragee, E.; Carrino, J.; Chou, R.; Cook, K.; Delitto, A.; et al. Report of the NIH Task Force on Research Standards for Chronic Low Back Pain. Phys. Ther. 2015, 95, e1–e18. [Google Scholar] [CrossRef]
- Hollman, J.H.; Kovash, F.M.; Kubik, J.J.; Linbo, R.A. Age-related differences in spatiotemporal markers of gait stability during dual task walking. Gait Posture 2007, 26, 113–119. [Google Scholar] [CrossRef]
- Bailey, C.A.; Porta, M.; Pilloni, G.; Arippa, F.; Pau, M.; Côté, J.N. Sex-independent and dependent effects of older age on cycle-to-cycle variability of muscle activation during gait. Exp. Gerontol. 2019, 124, 110656. [Google Scholar] [CrossRef] [PubMed]
- Hollman, J.H.; Watkins, M.K.; Imhoff, A.C.; Braun, C.E.; Akervik, K.A.; Ness, D.K. Complexity, fractal dynamics and determinism in treadmill ambulation: Implications for clinical biomechanists. Clin. Biomech. 2016, 37, 91–97. [Google Scholar] [CrossRef]
- An, K.N.; Chao, E.Y. Kinematic analysis of human movement. Ann. Biomed. Eng. 1984, 12, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Lamoth, C.J.; Daffertshofer, A.; Meijer, O.G.; Beek, P.J. How do persons with chronic low back pain speed up and slow down?: Trunk–pelvis coordination and lumbar erector spinae activity during gait. Gait Posture 2006, 23, 230–239. [Google Scholar] [CrossRef]
- Callegari, B.; Saunier, G.; Duarte, M.B.; da Silva Almeida, G.C.; Amorim, C.F.; Mourey, F.; Pozzo, T.; da Silva Souza, G. Anticipatory Postural Adjustments and kinematic arm features when postural stability is manipulated. PeerJ 2018, 6, e4309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, P.S.; Leininger, P.M. A kinematic and kinetic analysis of spinal region in subjects with and without recurrent low back pain during one leg standing. Clin. Biomech. 2015, 30, 696–702. [Google Scholar] [CrossRef]
- McKay, W.B.; Lee, D.C.; Lim, H.K.; Holmes, S.A.; Sherwood, A.M. Neurophysiological examination of the corticospinal system and voluntary motor control in motor-incomplete human spinal cord injury. Exp. Brain Res. 2005, 163, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.K.; Lee, D.; McKay, W.; Protas, E.; Holmes, S.; Priebe, M.; Sherwood, A. Analysis of sEMG during voluntary movement-part II: Voluntary response index sensitivity. IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.K.; Lee, D.C.; McKay, W.B.; Priebe, M.M.; A Holmes, S.; Sherwood, A. Neurophysiological assessment of lower-limb voluntary control in incomplete spinal cord injury. Spinal Cord 2005, 43, 283–290. [Google Scholar] [CrossRef]
- McKay, W.B.; Lim, H.K.; Priebe, M.M.; Stokic, D.; Sherwood, A. Clinical Neurophysiological Assessment of Residual Motor Control in Post-Spinal Cord Injury Paralysis. Neurorehabilit. Neural Repair 2004, 18, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lim, H.K.; McKay, W.; Priebe, M.; Holmes, S.; Sherwood, A. Toward an objective interpretation of surface EMG patterns: A voluntary response index (VRI). J. Electromyogr. Kinesiol. 2004, 14, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.S.; Danial, P. A Kinematic Symmetry Index of Gait Patterns between Older Adults with and Without Low Back Pain. Spine 2017, 42, E1350–E1356. [Google Scholar] [CrossRef]
- Sung, P.S.; Danial, P.; Lee, N.C. Reliability of the Kinematic Steadiness Index during one-leg standing in subjects with recurrent low back pain. Eur. Spine J. 2017, 27, 171–179. [Google Scholar] [CrossRef]
- Hlaing, S.S.; Puntumetakul, R.; Wanpen, S.; Boucaut, R. Balance Control in Patients with Subacute Non-Specific Low Back Pain, with and without Lumbar Instability: A Cross-Sectional Study. J. Pain Res. 2020, 13, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Goossens, N.; Janssens, L.; Caeyenberghs, K.; Albouy, G.; Brumagne, S. Differences in brain processing of proprioception related to postural control in patients with recurrent non-specific low back pain and healthy controls. NeuroImage Clin. 2019, 23, 101881. [Google Scholar] [CrossRef]
- Ghamkhar, L.; Kahlaee, A.H. Trunk Muscles Activation Pattern during Walking in Subjects With and Without Chronic Low Back Pain: A Systematic Review. PM&R 2015, 7, 519–526. [Google Scholar] [CrossRef]
- Hanada, E.Y.; Johnson, M.; Hubley-Kozey, C. A Comparison of Trunk Muscle Activation Amplitudes during Gait in Older Adults with and Without Chronic Low Back Pain. PM&R 2011, 3, 920–928. [Google Scholar] [CrossRef]
- Sung, P.S.; Spratt, K.F.; Wilder, D.G. A Possible Methodological Flaw in Comparing Dominant and Nondominant Sided Lumbar Spine Muscle Responses Without Simultaneously Considering Hand Dominance. Spine 2004, 29, 1914–1922. [Google Scholar] [CrossRef]
- Lamoth, C.J.C.; Meijer, O.G.; Daffertshofer, A.; Wuisman, P.I.J.M.; Beek, P.J. Effects of chronic low back pain on trunk coordination and back muscle activity during walking: Changes in motor control. Eur. Spine J. 2005, 15, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Brophy, R.; Silvers, H.J.; Gonzales, T.; Mandelbaum, B.R. Gender influences: The role of leg dominance in ACL injury among soccer players. Br. J. Sports Med. 2010, 44, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Fairbank, J. Revised Oswestry Disability Questionnaire. Spine 2000, 25, 2552. [Google Scholar] [CrossRef] [Green Version]
- White, J.D.; Carson, N.; Baum, B.; Reinking, M.F.; McPoil, T.G. USE OF 2-DIMENSIONAL SAGITTAL KINEMATIC VARIABLES TO ESTIMATE GROUND REACTION FORCE DURING RUNNING. Int. J. Sports Phys. Ther. 2019, 14, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Fallahtafti, F.; Wurdeman, S.R.; Yentes, J.M. Sampling rate influences the regularity analysis of temporal domain measures of walking more than spatial domain measures. Gait Posture 2021, 88, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.S.; Kim, Y.H. Kinematic analysis of symmetric axial trunk rotation on dominant hip. J. Rehabil. Res. Dev. 2011, 48, 1029. [Google Scholar] [CrossRef]
- Malus, J.; Skypala, J.; Silvernail, J.; Uchytil, J.; Hamill, J.; Barot, T.; Jandacka, D. Marker Placement Reliability and Objectivity for Biomechanical Cohort Study: Healthy Aging in Industrial Environment (HAIE—Program 4). Sensors 2021, 21, 1830. [Google Scholar] [CrossRef]
- Leardini, A.; Benedetti, M.G.; Berti, L.; Bettinelli, D.; Nativo, R.; Giannini, S. Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait Posture 2007, 25, 453–462. [Google Scholar] [CrossRef]
- Sung, P.S.; Zipple, J.T.; Danial, P. Gender differences in asymmetrical limb support patterns between subjects with and without recurrent low back pain. Hum. Mov. Sci. 2017, 52, 36–44. [Google Scholar] [CrossRef]
- Lee, D.; Sung, P.S. Comparison of kinematic similarity index during gait between adults with and without nonspecific chronic neck pain. Gait Posture 2021, 91, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Lipsitz, L.A.; Goldberger, A.L. Loss of ’complexity’ and aging. Potential applications of fractals and chaos theory to senescence. JAMA 1992, 267, 1806–1809. [Google Scholar] [CrossRef]
- Huang, Y.; Bruijn, S.; Lin, J.H.; Meijer, O.G.; Wu, W.H.; Abbasi-Bafghi, H.; Lin, X.C.; van Dieen, J. Gait adaptations in low back pain patients with lumbar disc herniation: Trunk coordination and arm swing. Eur. Spine J. 2011, 20, 491–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Dieën, J.H.; Prins, M.R.; Bruijn, S.M.; Wu, W.H.; Liang, B.; Lamoth, C.J.; Meijer, O.G. Coordination of Axial Trunk Rotations During Gait in Low Back Pain. A Narrative Review. J. Hum. Kinet. 2021, 76, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Pakzad, M.; Fung, J.; Preuss, R. Pain catastrophizing and trunk muscle activation during walking in patients with chronic low back pain. Gait Posture 2016, 49, 73–77. [Google Scholar] [CrossRef]
- Bonab, M.A.R.; Colak, T.K.; Toktas, Z.O.; Konya, D. Assessment of Spatiotemporal Gait Parameters in Patients with Lumbar Disc Herniation and Patients with Chronic Mechanical Low Back Pain. Turk. Neurosurg. 2019, 30, 277–284. [Google Scholar] [CrossRef]
- Vogt, L.; Pfeifer, K.; Portscher, M.; Banzer, W. Influences of Nonspecific Low Back Pain on Three-Dimensional Lumbar Spine Kinematics in Locomotion. Spine 2001, 26, 1910–1919. [Google Scholar] [CrossRef] [PubMed]
- Anukoolkarn, K.; Vongsirinavarat, M.; Bovonsunthonchai, S.; Vachalathiti, R. Plantar Pressure Distribution Pattern during Mid-Stance Phase of the Gait in Patients with Chronic Non-Specific Low Back Pain. J. Med Assoc. Thail. = Chotmaihet thangphaet 2015, 98, 896–901. [Google Scholar]
- Lee, T.-R.; Kim, Y.H.; Sung, P.S. A comparison of pain level and entropy changes following core stability exercise intervention. Med. Sci. Monit. 2011, 17, CR362–CR368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willson, J.; Dougherty, C.P.; Ireland, M.L.; Davis, I.M. Core Stability and Its Relationship to Lower Extremity Function and Injury. J. Am. Acad. Orthop. Surg. 2005, 13, 316–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodges, P.W. Core stability exercise in chronic low back pain. Orthop. Clin. N. Am. 2003, 34, 245–254. [Google Scholar] [CrossRef]
- Sjölander, P.; Michaelson, P.; Jaric, S.; Djupsjöbacka, M. Sensorimotor disturbances in chronic neck pain—Range of motion, peak velocity, smoothness of movement, and repositioning acuity. Man. Ther. 2008, 13, 122–131. [Google Scholar] [CrossRef] [PubMed]
Variable | Control Group | LBP Group | Statistic | p |
---|---|---|---|---|
Number (female/male) | 19 (10/9) | 22 (8/14) | Chi-square = 1.09 | 0.35 |
Age (years) | 27.58 ± 9.13 | 28.91 ± 12.80 | t = −0.37 | 0.71 |
BMI (m/kg2) | 19.29 ± 3.08 | 18.06 ± 4.13 | t = 1.06 | 0.29 |
ODI (%) | 1.79 ± 2.70 | 21.18 ± 5.60 | t = −12.37 | 0.001 * |
Variable | Control Group | LBP Group | 95% CI (Lower/Upper) | Statistic | p |
---|---|---|---|---|---|
Cadence (steps/min) | 113.35 ± 13.24 | 110.58 ± 5.31 | −4.09/9.63 | t = 0.82 | 0.42 |
Speed (cm/s) | 125.84 ± 23.84 | 123.17 ± 13.49 | −10.55/15.89 | t = 0.41 | 0.68 |
Stride length (cm) | 131.93 ± 18.07 | 132.88 ± 12.09 | −10.92/16.26 | t = −0.18 | 0.85 |
Step width (cm) | 10.56 ± 2.65 | 10.09 ± 3.80 | −1.79/2.73 | t = 0.42 | 0.67 |
Stance D (% cycle) | 60.20 ± 4.38 | 61.16 ± 2.01 | −3.28/1.35 | t = −0.84 | 0.41 |
Stance ND (% cycle) | 61.28 ± 2.89 | 60.11 ± 1.54 | −0.41/2.75 | t = 1.50 | 0.14 |
Swing D (% cycle) | 39.79 ± 4.38 | 38.83 ± 2.00 | −1.35/3.28 | t = 0.84 | 0.41 |
Swing ND (% cycle) | 38.88 ± 1.54 | 39.88 ± 1.54 | −2.75/0.41 | t = −1.50 | 0.14 |
Variable | Control Group | LBP Group | 95% CI (Lower/Upper) | Statistic | p |
---|---|---|---|---|---|
KSI | 0.99 ± 0.01 | 0.91 ± 0.05 | 0.05/0.10 | t = 6.52 | 0.001 ** |
SD of SI | 0.01 ± 0.01 | 0.06 ± 0.03 | −0.07/−0.04 | t = −7.62 | 0.001 ** |
KSI of stance phase | 0.99 ± 0.01 | 0.90 ± 0.05 | 0.06/0.11 | t = 6.26 | 0.001 ** |
KSI of swing phase | 0.98 ± 0.01 | 0.92 ± 0.06 | 0.03/0.08 | t = 4.23 | 0.001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Sung, P. Gait Asymmetry Comparison between Subjects with and without Nonspecific Chronic Low Back Pain. Symmetry 2021, 13, 2129. https://doi.org/10.3390/sym13112129
Lee D, Sung P. Gait Asymmetry Comparison between Subjects with and without Nonspecific Chronic Low Back Pain. Symmetry. 2021; 13(11):2129. https://doi.org/10.3390/sym13112129
Chicago/Turabian StyleLee, Dongchul, and Paul Sung. 2021. "Gait Asymmetry Comparison between Subjects with and without Nonspecific Chronic Low Back Pain" Symmetry 13, no. 11: 2129. https://doi.org/10.3390/sym13112129
APA StyleLee, D., & Sung, P. (2021). Gait Asymmetry Comparison between Subjects with and without Nonspecific Chronic Low Back Pain. Symmetry, 13(11), 2129. https://doi.org/10.3390/sym13112129