Optical Fiber Sensors for Monitoring Railway Infrastructures: A Review towards Smart Concept
Abstract
:1. Introduction
2. Optical Fiber Sensing Technologies
2.1. Grating-Based Sensors
2.2. Interferometry Based Sensors: Mach–Zehnder and Fabry–Perot
2.3. Scattering-Based Distributed Optical Fiber Sensors
3. Industrialized Optical Fiber Sensors for Monitoring Railway Parameters
3.1. Industrialized OFS
3.2. Applications of Industrialized OFS in Railway Infrastructures
3.2.1. Rails
3.2.2. Rail Components
3.2.3. Concrete Sleepers, Ballast and Ballastless Track Slab
3.2.4. Railway Bridges and Tunnels
3.2.5. Rail Foundation
4. Parameter Reflection of Railway Structures Based on Strain Transfer Analysis
5. Smart Concept for AI Contribution in Monitoring System of Railway Infrastructures
6. Conclusions
- (1)
- A concise report on the applications/studies of novel optical fiber based sensors in civil engineering and the possible use in the railway system is given.
- (2)
- Review of the application of industrialized OFS in the monitoring of structural parameters and damage status is provided, which declares the intensive use of OFS in the railway system.
- (3)
- Strain transfer-based parameter reflection of railway structures is discussed, which further declares the innovative ways for feature identification and health state prediction.
- (4)
- Smart concept for the AI contribution in the SHM system of railway structures is conferred and the possible advanced functions (i.e., adaptation and upgradation) are declared, which can provide challenging instructions for the development of SHM systems and the extended function (i.e., BIM and digital twin) for the smart management in the railway industry.
- (5)
- Applications of OFS embedded into fiber-reinforced composite materials to design self-sensing structural components to monitor the parameters of railway infrastructures, which can be further conducted by association with the strain transfer analysis and AI-based technology.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gou, H.; Leng, D.; Bao, Y.; Pu, Q. Cumulative deformation of high-speed railway bridge pier under repeated earthquakes. Earthq. Struct. 2019, 16, 391–399. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, K.; Wang, M.; Koks, E.E. A River Flood and Earthquake Risk Assessment of Railway Assets along the Belt and Road. Int. J. Disaster Risk Sci. 2021, 12, 553–567. [Google Scholar] [CrossRef]
- Kyriakidis, M.; Pak, K.T.; Majumdar, A. Railway Accidents Caused by Human Error: Historic Analysis of UK Railways, 1945 to 2012. Transp. Res. Rec. 2015, 2476, 126–136. [Google Scholar] [CrossRef]
- Meng, Z.; Shu, C.; Wu, Q.; Wang, Y.; Yang, Y.; Fu, Z. Surface Deformation of High-Speed Railway Between Changchun and Harbin Based on Time-Series Insar Techinque. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 1023–1026. [Google Scholar]
- Bian, X.; Jiang, H.; Chen, Y. Accumulative deformation in railway track induced by high-speed traffic loading of the trains. Earthq. Eng. Eng. Vib. 2010, 9, 319–326. [Google Scholar] [CrossRef]
- Lai, Z.; Kang, X.; Jiang, L.; Zhou, W.; Fetng, Y.; Zhang, Y.; Yu, J.; Nie, L. Earthquake Influence on the Rail Irregularity on High-Speed Railway Bridge. Shock Vib. 2020, 2020, 4315304. [Google Scholar] [CrossRef]
- Lin, W.; Taniguchi, N.; Yoda, T.; Satake, S. A Preventive Strengthening Strategy for Aged Steel Columns; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2018. [Google Scholar]
- Wang, Q.A.; Ni, Y.Q. Measurement and Forecasting of High-Speed Rail Track Slab Deformation under Uncertain SHM Data Using Variational Heteroscedastic Gaussian Process. Sensors 2019, 19, 3311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, F.K. Ultra reliable and super safe structures for the new century. In Proceedings of the First European Workshop on Structural Health Monitoring, Paris, France, 10–12 July 2002. [Google Scholar]
- Barke, D.; Chiu, W.K. Structural Health Monitoring in the Railway Industry: A Review. Struct. Health Monit. 2005, 4, 81–93. [Google Scholar] [CrossRef]
- Balliet, H.S. The Invention of the Track Circuit: The History of Dr. William Robinson’s Invention of the Track Circuit, the Fundamental Unit Which Made Possible Our Present Automatic Block Signaling and Interlocking Systems; Signal Section, American Railway Association: Washington, DC, USA, 1922. [Google Scholar]
- Soni, A.; Robson, S.; Gleeson, B. Structural monitoring for the rail industry using conventional survey, laser scanning and photogrammetry. Appl. Geomat. 2015, 7, 123–138. [Google Scholar] [CrossRef]
- Macchi, M.; Garetti, M.; Centrone, D.; Fumagalli, L.; Piero Pavirani, G. Maintenance management of railway infrastructures based on reliability analysis. Reliab. Eng. Syst. Saf. 2012, 104, 71–83. [Google Scholar] [CrossRef]
- Mori, H.; Tsunashima, H.; Kojima, T.; Matsumoto, A.; Mizuma, T. Condition Monitoring of Railway Track Using In-service Vehicle. J. Mech. Syst. Transp. Logist. 2010, 3, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Chraim, F.; Puttagunta, S. Monitoring Track Health Using Rail Vibration Sensors; Academia. Available online: https://www.academia.edu/7833123/Monitoring_Track_Health_Using_Rail_Vibration_Sensors. (accessed on 10 September 2021).
- Thakkar, N.A.; Steel, J.A.; Reuben, R.L. Rail–wheel interaction monitoring using Acoustic Emission: A laboratory study of normal rolling signals with natural rail defects. Mech. Syst. Signal Process. 2010, 24, 256–266. [Google Scholar] [CrossRef]
- Clark, A.; Kaewunruen, S.; Janeliukstis, R.; Papaelias, M. Damage Detection in Railway Prestressed Concrete Sleepers using Acoustic Emission. IOP Conf. Ser. Mater. Sci. Eng. 2017, 251, 012068. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Feng, N.; Wang, Y.; Shen, Y. Acoustic emission detection of rail defect based on wavelet transform and Shannon entropy. J. Sound Vib. 2015, 339, 419–432. [Google Scholar] [CrossRef]
- Edwards, J.R.; Gao, Z.; Wolf, H.E.; Dersch, M.S.; Qian, Y. Quantification of concrete railway sleeper bending moments using surface strain gauges. Measurement 2017, 111, 197–207. [Google Scholar] [CrossRef]
- Pisanu, T.; Buffa, F.; Poppi, S.; Marongiu, P.; Serra, G.; Vargiu, G.P.; Concu, R. The SRT inclinometer for monitoring the rail and the thermal gradient effects on the alidade structure. In Ground-Based and Airborne Telescopes V, Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Montréal, QC, Canada, 22–27 June 2014; SPIE: Bellingham, WA, USA, 2014; p. 91454R. [Google Scholar]
- Carboni, M.; Collina, A.; Liu, R.; Zappa, E. A preliminary feasibility analysis about the structural health monitoring of railway concrete sleepers by acoustic emission and digital image correlation. In Proceedings of the International Symposium on Structural Health Monitoring and Nondestructive Testing (SHM-NDT 2018), Saarbruecken, Germany, 4–5 October 2018; pp. 1–9. [Google Scholar]
- Zhou, Z.; Sasy Chan, Y.W.; Ou, J.P. Optical fiber sensor-based smart structures. J. Phys. Conf. Ser. 2018, 1065, 252003. [Google Scholar] [CrossRef] [Green Version]
- Sasy Chan, Y.W.; Zhou, Z.; Liu, W.; Ou, J. OFBG-Based Smart Double-Skin Tubular Confined-Concrete Column with Basalt FRP-Steel Composite. Sensors 2019, 19, 3572. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Sasy Chan, Y.W.; Ou, J.P. Advances in FRP-Based Smart Components and Structures. In Structural Health Monitoring of Composite Structures Using Fiber Optic Methods, 1st ed.; Rajan, G., Prusty, B.G., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 371–413. [Google Scholar]
- Wang, H.P.; Xiang, P.; Jiang, L.Z. Strain transfer theory of industrialized optical fiber-based sensors in civil engineering: A review on measurement accuracy, design and calibration. Sens. Actuator A Phys. 2019, 285, 414–426. [Google Scholar] [CrossRef]
- Udd, E. Overview of Fiber Optic Sensors. In Fiber Optic Sensors, 2nd ed.; Yin, S., Ruffin, P.B., Yu, F.T.S., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 1–34. [Google Scholar]
- Zhang, L.; Zhang, W.; Bennion, I. In-Fiber Grating Optic Sensors. In Fiber Optic Sensors, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 109–162. [Google Scholar]
- Tosi, D. Review and Analysis of Peak Tracking Techniques for Fiber Bragg Grating Sensors. Sensors 2017, 17, 2368. [Google Scholar] [CrossRef]
- Lee, B.; Jeong, Y. Interrogation Techniques for Fiber Grating Sensors and the Theory of Fiber Gratings. In Fiber Optic Sensors, 2nd ed.; Yin, S., Ruffin, P.B., Yu, F.T.S., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 253–332. [Google Scholar]
- F610A-FBG Wavelength Interrogator. Available online: https://www.fiberer.com/FBG-wavelength-interrogator.html (accessed on 27 September 2021).
- Li, R.; Tan, Y.; Chen, Y.; Hong, L.; Zhou, Z. Investigation of sensitivity enhancing and temperature compensation for fiber Bragg grating (FBG)-based strain sensor. Opt. Fiber Technol. 2019, 48, 199–206. [Google Scholar] [CrossRef]
- Azhari, A.; Liang, R.; Toyserkani, E. A novel fibre Bragg grating sensor packaging design for ultra-high temperature sensing in harsh environments. Meas. Sci. Technol. 2014, 25, 11. [Google Scholar] [CrossRef]
- Li, D.; Zhou, Z.; Ou, J. Development and sensing properties study of FRP-FBG smart stay cable for bridge health monitoring applications. Measurement 2011, 44, 722–729. [Google Scholar] [CrossRef]
- Dandridge, A. Fiber Optic Sensors Based on the Mach–Zehnder and Michelson Interferometers. In Fiber Optic Sensors: An Introduction for Engineers and Scientists, 2nd ed.; Udd, E., Spillman, W.B., Jr., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 231–275. [Google Scholar]
- Liu, Y.; Lin, H.; Dai, Y.; Zhou, A.; Yuan, L. Fiber In-Line Mach–Zehnder Interferometer for Gas Pressure Sensing. IEEE Sens. J. 2018, 18, 8012–8016. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, Y.; Yang, Y.; Jin, W.; Jiang, Y.; Shen, Y.; Jian, S. High-sensitivity pressure sensor based on fiber Mach–Zehnder interferometer. Meas. Sci. Technol. 2017, 28, 105102. [Google Scholar] [CrossRef] [Green Version]
- Taylor, H. Fiber Optic Sensors Based upon the Fabry–Perot Interferometer. In Fiber Optic Sensors, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 35–64. [Google Scholar]
- Zhang, G.; Yu, Q.; Song, S. An investigation of interference/intensity demodulated fiber-optic Fabry–Perot cavity sensor. Sens. Actuator A Phys. 2004, 116, 33–38. [Google Scholar] [CrossRef]
- Xiao, G.; Adnet, A.; Zhang, Z.; Lu, Z.; Grover, C. Fiber Optic Fabry-Perot Interferometric Gas Pressure Sensors Embedded in Pressure Fittings. Microw. Opt. Technol. Lett. 2004, 42, 486–489. [Google Scholar] [CrossRef]
- Islam, M.R.; Ali, M.M.; Lai, M.-H.; Lim, K.-S.; Ahmad, H. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review. Sensors 2014, 14, 7451–7488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, X.; Wu, W.; Meng, D.; Ansari, F.; Zhou, J. Distributed monitoring method for upheaval buckling in subsea pipelines with Brillouin optical time-domain analysis sensors. Adv. Struct. Eng. 2016, 20, 180–190. [Google Scholar] [CrossRef]
- Bado, M.F.; Casas, J.R. A Review of Recent Distributed Optical Fiber Sensors Applications for Civil Engineering Structural Health Monitoring. Sensors 2021, 21, 1818. [Google Scholar] [CrossRef]
- He, Z.; Liu, Q.; Fan, X.; Chen, D.; Wang, S.; Yang, G. A Review on Advances in Fiber-optic Distributed Acoustic Sensors (DAS). In Proceedings of the CLEO Pacific Rim Conference, Conference on Lasers and Electro-Optics/Pacific Rim, Hong Kong, China, 29 July–3 August 2018; Optica Publishing Group: Washington, DC, USA, 2018; p. Th2L.1. [Google Scholar]
- Bao, X.; Chen, L. Recent Progress in Distributed Fiber Optic Sensors. Sensors 2012, 12, 8601–8639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.; Chen, L.; Bao, X. Extending the Sensing Range of Brillouin Optical Time-Domain Analysis Combining Frequency-Division Multiplexing and In-Line EDFAs. J. Light. Technol. 2012, 30, 1161–1167. [Google Scholar] [CrossRef]
- Garcus, D.; Gogolla, T.; Krebber, K.; Schliep, F. Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements. J. Light. Technol. 1997, 15, 654–662. [Google Scholar] [CrossRef]
- Minardo, A.; Bernini, R.; Ruiz-Lombera, R.; Mirapeix, J.; Lopez-Higuera, J.M.; Zeni, L. Proposal Proposal of Brillouin optical frequency-domain reflectometry (BOFDR). Opt. Express 2016, 24, 29994–30001. [Google Scholar] [CrossRef] [PubMed]
- Kurashima, T.; Horiguchi, T.; Tateda, M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers. Opt. Lett. 1990, 15, 1038–1040. [Google Scholar] [CrossRef] [PubMed]
- Kurashima, T.; Horiguchi, T.; Izumita, H.; Furukawa, S.; Koyamada, Y. Brillouin optical-fiber time domain reflectometry. Int. Quantum Electron. Conf. 1993, E76-B, 382–390. [Google Scholar]
- Jeong, J.H.; Lee, K.; Song, K.Y.; Jeong, J.-M.; Lee, S.B. Differential measurement scheme for Brillouin Optical Correlation Domain Analysis. Opt. Express 2012, 20, 27094–27101. [Google Scholar] [CrossRef]
- Mizuno, Y.; Zou, W.; He, Z.; Hotate, K. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR). Opt. Express 2008, 16, 12148–12153. [Google Scholar] [CrossRef]
- Bao, X.; Chen, L. Recent Progress in Brillouin Scattering Based Fiber Sensors. Sensors 2011, 11, 4152–4187. [Google Scholar] [CrossRef]
- Kreger, S.; Rahim, N.A.A.; Garg, N.; Klute, S.M.; Metrey, D.R.; Beaty, N.; Jeans, J.W.; Gamber, R. Optical frequency domain reflectometry: Principles and applications in fiber optic sensing. In SPIE Fiber Optic Sensors and Applications XIII, Proceedings of the SPIE Comercial + Scientific Sensing and Imaging, Baltimore, MD, USA, 17–21 April 2016; SPIE: Bellingham, WA, USA, 2016; p. 98520T. [Google Scholar]
- Tosi, D.; Molardi, C.; Sypabekova, M.; Blanc, W. Enhanced Backscattering Optical Fiber Distributed Sensors: Tutorial and Review. IEEE Sens. J. 2021, 21, 12667–12678. [Google Scholar] [CrossRef]
- OBR 4600. Available online: https://lunainc.com/product/obr-4600 (accessed on 10 September 2021).
- Wheeler, L.N.; Pannese, E.; Hoult, N.A.; Take, W.A.; Le, H. Measurement of distributed dynamic rail strains using a Rayleigh backscatter based fiber optic sensor: Lab and field evaluation. Transp. Geotech. 2018, 14, 70–80. [Google Scholar] [CrossRef]
- Failleau, G.; Beaumont, O.; Razouk, R.; Delepine-Lesoille, S.; Landolt, M.; Courthial, B.; Hénault, J.; Martinot, F.; Bertrand, J.; Hay, B. A metrological comparison of Raman-distributed temperature sensors. Measurement 2018, 116, 18–24. [Google Scholar] [CrossRef]
- Soto, M.A.; Sahu, P.; Faralli, S.; Bolognini, G.; Di Pasquale, F.; Nebendahl, B.; Rueck, C. Distributed temperature sensor system based on Raman scattering using correlation-codes. Electron. Lett. 2007, 43, 862–864. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Dutta, S.; Kurup, P.; Yu, T.; Wang, X. A review of railway infrastructure monitoring using fiber optic sensors. Sens. Actuator A Phys. 2020, 303, 111728. [Google Scholar] [CrossRef]
- Speziale, S.; Marquardt, H.; Duffy, T.S. Brillouin Scattering and its Application in Geosciences. Rev. Mineral. Geochem. 2014, 78, 543–603. [Google Scholar] [CrossRef]
- Galindez-Jamioy, C.A.; López-Higuera, J.M. Brillouin Distributed Fiber Sensors: An Overview and Applications. J. Sens. 2012, 2012, 204121. [Google Scholar] [CrossRef] [Green Version]
- Zou, W.; Long, X.; Chen, J. Brillouin Scattering in Optical Fibers and Its Application to Distributed Sensors. In Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications; IntechOpen: London, UK, 2015. [Google Scholar]
- Yuksel, K.; Wuilpart, M.; Moeyaert, V.; Megret, P. Optical frequency domain reflectometry: A review. In Proceedings of the 2009 11th International Conference on Transparent Optical Networks, Ponta Delgada, Portugal, 28 June–2 July 2009; pp. 1–5. [Google Scholar]
- ODiSI 6000 Series. Available online: https://lunainc.com/product/odisi-6000-series (accessed on 10 September 2021).
- Ghildiyal, S.; Ranjan, P.; Mishra, S.; Balasubramaniam, R.; John, J. Fabry–Perot Interferometer-Based Absolute Pressure Sensor With Stainless Steel Diaphragm. IEEE Sens. J. 2019, 19, 6093–6101. [Google Scholar] [CrossRef]
- Chen, Z.; Xiong, S.; Gao, S.; Zhang, H.; Wan, L.; Huang, X.; Huang, B.; Feng, Y.; Liu, W.; Li, Z. High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip. Sensors 2018, 18, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berardi, M.; Bielawski, K.; Rijnveld, N.; Gruca, G.; Aardema, H.; van Tol, L.; Wuite, G.; Akca, B.I. Optical interferometry based micropipette aspiration provides real-time sub-nanometer spatial resolution. Commun. Biol. 2021, 4, 610. [Google Scholar] [CrossRef]
- Zhu, Z.; Ba, D.; Liu, L.; Qiu, L.; Yang, S.; Dong, Y. Multiplexing of Fabry-Pérot Sensor by Frequency Modulated Continuous Wave Interferometry for Quais-Distributed Sensing Application. J. Light. Technol. 2021, 39, 4529–4534. [Google Scholar] [CrossRef]
- Butler, L.J.; Xu, J.; He, P.; Gibbons, N.; Dirar, S.; Middleton, C.R.; Elshafie, M.Z. Robust fibre optic sensor arrays for monitoring early-age performance of mass-produced concrete sleepers. Struct. Health Monit. 2017, 17, 635–653. [Google Scholar] [CrossRef]
- Wang, P.; Xie, K.; Shao, L.; Yan, L.; Xu, J.; Chen, R. Longitudinal force measurement in continuous welded rail with bi-directional FBG strain sensors. Smart Mater. Struct. 2015, 25, 015019. [Google Scholar] [CrossRef]
- Zeni, L.; Minardo, A.; Porcaro, G.; Giannetta, D.; Bernini, R. Monitoring railways with optical fibers. SPIE Newsroom 2013. Available online: https://www.spie.org/news/5246-monitoring-railways-with-optical-fibers?SSO=1 (accessed on 10 September 2021). [CrossRef]
- Sun, F.; Hoult, N.A.; Butler, L.J.; Zhang, M. Distributed monitoring of rail lateral buckling under axial loading. J. Civ. Struct. Health Monit. 2021. [Google Scholar] [CrossRef]
- Velha, P.; Nannipieri, T.; Signorini, A.; Morosi, M.; Solazzi, M.; Barone, F.; Frisoli, A.; Ricciardi, L.; Eusepi, R.; Icardi, M.; et al. Monitoring Large Railways Infrastructures Using Hybrid Optical Fibers Sensor Systems. IEEE Trans. Intell. Transp. Syst. 2020, 21, 5177–5188. [Google Scholar] [CrossRef]
- Buggy, S.J.; James, S.W.; Staines, S.; Carroll, R.; Kitson, P.; Farrington, D.; Drewett, L.; Jaiswal, J.; Tatam, R. Railway track component condition monitoring using optical fibre Bragg grating sensors. Meas. Sci. Technol. 2016, 27, 055201. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Huang, W.; Zhang, W.; Li, F.; Du, Y. Train-Induced Vibration Monitoring of Track Slab under Long-Term Temperature Load Using Fiber-Optic Accelerometers. Sensors 2021, 21, 787. [Google Scholar] [CrossRef] [PubMed]
- Chapeleau, X.; Sedran, T.; Cottineau, L.-M.; Cailliau, J.; Taillade, F.; Gueguen, I.; Henault, J.-M. Study of ballastless track structure monitoring by distributed optical fiber sensors on a real-scale mockup in laboratory. Eng. Struct. 2013, 56, 1751–1757. [Google Scholar] [CrossRef]
- Kerrouche, A.; Boyle, W.; Gebremichael, Y.; Sun, T.; Grattan, K.; Täljsten, B.; Bennitz, A. Field tests of fibre Bragg grating sensors incorporated into CFRP for railway bridge strengthening condition monitoring. Sens. Actuator A Phys. 2008, 148, 68–74. [Google Scholar] [CrossRef]
- Yoon, H.-J.; Song, K.-Y.; Choi, C.; Na, H.-S.; Kim, J.-S. Real-Time Distributed Strain Monitoring of a Railway Bridge during Train Passage by Using a Distributed Optical Fiber Sensor Based on Brillouin Optical Correlation Domain Analysis. J. Sens. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.; Butler, L.J.; Elshafie, M.Z.E.B.; Middleton, C.R. Evaluating prestress losses in a prestressed concrete girder railway bridge using distributed and discrete fibre optic sensors. Constr. Build. Mater. 2020, 247, 118518. [Google Scholar] [CrossRef]
- Butler, L.J.; Gibbons, N.; He, P.; Middleton, C.; Elshafie, M.Z.E.B. Evaluating the early-age behaviour of full-scale prestressed concrete beams using distributed and discrete fibre optic sensors. Constr. Build. Mater. 2016, 126, 894–912. [Google Scholar] [CrossRef]
- Ye, X.W.; Ni, Y.Q.; Yin, J.H. Safety Monitoring of Railway Tunnel Construction Using FBG Sensing Technology. Adv. Struct. Eng. 2013, 16, 1401–1409. [Google Scholar] [CrossRef]
- Bobrowsky, P.; Sladen, W.; Huntley, D.; Quing, Z.; Bunce, C.; Edwards, T.; Hendry, M.; Martin, D.; Choi, E. Multi-parameter Monitoring of a Slow Moving Landslide: Ripley Slide, British Columbia, Canada. In Engineering Geology for Society and Territory; Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 2, pp. 155–158. [Google Scholar]
- Minardo, A.; Catalano, E.; Coscetta, A.; Zeni, G.; Di Maio, C.; Vassallo, R.; Picarelli, L.; Coviello, R.; Macchia, G.; Zeni, L. Long-Term Monitoring of a Tunnel in a Landslide Prone Area by Distributed Optical Fiber Sensors. In Proceedings of the GARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 6600–6603. [Google Scholar]
- Wang, H.P.; Xiang, P. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure. Meas. Sci. Technol. 2016, 27, 075106. [Google Scholar] [CrossRef]
- Wang, H.P.; Jiang, L.Z.; Xiang, P. Improving the durability of the optical fiber sensor based on strain transfer analysis. Opt. Fiber Technol. 2018, 42, 97–104. [Google Scholar] [CrossRef]
- Wang, H.P.; Jiang, L.Z.; Xiang, P. Priority design parameters of industrialized optical fiber sensors in civil engineering. Opt. Laser Technol. 2018, 100, 119–128. [Google Scholar] [CrossRef]
- Wang, H.P.; Xiang, P.; Li, X. Theoretical Analysis on Strain Transfer Error of FBG Sensors Attached on Steel Structures Subjected to Fatigue Load. Strain 2016, 52, 522–530. [Google Scholar] [CrossRef]
- Wang, H.P.; Chen, H.; Chen, C.; Zhang, H.-Y.; Jiang, H.; Song, T.; Feng, S.-Y. The Structural Performance of CFRP Composite Plates Assembled with Fiber Bragg Grating Sensors. Symmetry 2021, 13, 1631. [Google Scholar] [CrossRef]
- Wang, H.P.; Feng, S.-Y.; Gong, X.-S.; Guo, Y.-X.; Xiang, P.; Fang, Y.; Li, Q.-M. Dynamic Performance Detection of CFRP Composite Pipes based on Quasi-Distributed Optical Fiber Sensing Techniques. Front. Mater. 2021, 8. [Google Scholar] [CrossRef]
- Wang, H.P.; Dai, J.G. Strain transfer analysis of fiber Bragg grating sensor assembled composite structures subjected to thermal loading. Compos. B Eng. 2019, 162, 303–313. [Google Scholar] [CrossRef]
- Wang, H.P.; Ni, Y.-Q.; Dai, J.-G.; Yuan, M.-D. Interfacial debonding detection of strengthened steel structures by using smart CFRP-FBG composites. Smart Mater. Struct. 2019, 28, 115001. [Google Scholar] [CrossRef]
- Wang, H.P.; Dai, J.-G.; Wang, X.-Z. Improved temperature compensation of fiber Bragg grating-based sensors applied to structures under different loading conditions. Opt. Fiber Technol. 2021, 63, 102506. [Google Scholar] [CrossRef]
- Shafique, R.; Siddiqui, H.-U.-R.; Rustam, F.; Ullah, S.; Siddique, M.A.; Lee, E.; Ashraf, I.; Dudley, S. A Novel Approach to Railway Track Faults Detection Using Acoustic Analysis. Sensors 2021, 21, 6221. [Google Scholar] [CrossRef]
- Xiang, P.; Wei, M.; Sun, M.; Li, Q.; Jiang, L.; Liu, X.; Ren, J. Creep Effect on the Dynamic Response of Train-Track-Continuous Bridge System. Int. J. Struct. Stab. Dyn. 2021, 21, 2150139. [Google Scholar] [CrossRef]
- Thon, C.; Finke, B.; Kwade, A.; Schilde, C. Artificial Intelligence in Process Engineering. Adv. Intel. Syst. 2021, 3, 2000261. [Google Scholar] [CrossRef]
- Abioye, S.O.; Oyedele, L.O.; Akanbi, L.; Ajayi, A.; Delgado, J.M.D.; Bilal, M.; Akinade, O.O.; Ahmed, A. Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. J. Build. Eng. 2021, 44, 103299. [Google Scholar] [CrossRef]
- Bao, Y.; Chen, Z.; Wei, S.; Xu, Y.; Tang, Z.; Li, H. The State of the Art of Data Science and Engineering in Structural Health Monitoring. Engineering 2019, 5, 234–242. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Lian, Q. Digital twin aided sustainability-based lifecycle management for railway turnout systems. J. Clean. Prod. 2019, 228, 1537–1551. [Google Scholar] [CrossRef]
- Kampczyk, A.; Dybeł, K. The fundamental approach of the digital twin application in railway turnouts with innovative monitoring of weather conditions. Sensors 2021, 21, 5757. [Google Scholar] [CrossRef] [PubMed]
- Consilvio, A.; Solís-Hernández, J.; Jiménez-Redondo, N.; Sanetti, P.; Papa, F.; Mingolarra-Garaizar, I. On applying machine learning and simulative approaches to railway asset management: The earthworks and track circuits case studies. Sustainability 2020, 12, 2544. [Google Scholar] [CrossRef] [Green Version]
Sensing Technique | Characteristics | Advantages | Shortcomings |
---|---|---|---|
Grating based | Type: Point/Quasi-distributed. | Easy integration and tiny size. | Thermal cross-sensitivity |
Sensing range: up to 100 channels. | Unique wavelength multiplexing capability. | Transverse strain sensitivity Discrete | |
Measurement parameters: Strain, temperature and displacement. Spatial resolution: 2 mm as Bragg length | Multiple FBG sensors into single optical channel. Immune to EMI. Dynamic strain measurement | Expensive Difficulty for wavelength shift demodulation for multipoint sensing | |
Raman | Type: Distributed | Long distance measurement | Working environment: ≤300 °C |
Sensing range: 1–37 km Measurement parameters: Temperature Spatial resolution: 0.01 m–17 m | Low spatial resolution Suitable for heavy industrial applications Hostile environment resistance | Unsuitable for real time fiber monitoring Limited to temperature monitoring | |
Brillouin | Type: Distributed | High accuracy [60] | High spatial resolution |
Sensing range: 100–150 km [44] | Multiple sensitivities [61] | Brillouin peaks overlapping [62] | |
Measurement parameters: Temperature and strain | No dead zones of sensing location (distributed sensing) | Unsuitable for short distance measurement | |
Spatial resolution: 0.5 m–5 m [45] | Low-cost fiber sensing | Fiber loss | |
Rayleigh (DAS and OTDR) | Type: Scattered Sensing range: From 10 to 50 km Measurement parameters: Temperature, strain, and vibration Spatial resolution ≈ 5–10 m | Solid and small design Distributed sensing Real-time and continuous monitoring Suitable for long-distance and dynamic monitoring | Low S/N ratio Thermal cross-sensitivity Unsuitable for harsh environment application Uncertainty in channel depth |
Rayleigh (OFDR) | Type: Distributed Sensing range: 50–70 m Measurement parameters: Strain and temperature Spatial resolution ≈ 1 mm | Small spatial resolution High sensitivity and S/N ratio Continuous and real-time data monitoring Non-intrusive Convenient for static measurements | Short distance measurement Non-linearity effects Polarization issues Frequent signal attenuation Expensive Intense noise of Laser [63] |
Rayleigh (OBR and ODiSi) | Type: Distributed Sensing range: 10–50 m Measurement parameters: Strain and temperature Spatial resolution ≤ 1 mm | Static (OBR-4600) and dynamic (ODiSi-6000) measurement Very low spatial resolution [64] Recent technology | Expensive Short distance measurement |
Interferometry based (Fabry-Perot) | Type: Discrete/Quasi-distributed. Sensing range ≈ 100 Channels. Measurement parameters: Pressure and temperature. Spectral resolution ≈ 0.2 nm [65] | High temperature measurement range (25–1000 °C) [66] Miniaturize sensor Very high resolution (sub-nanometer) [67] Multiplexing ability [68] | Demodulation High-cost and complex structures Short-distance measurement |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasy Chan, Y.W.; Wang, H.-P.; Xiang, P. Optical Fiber Sensors for Monitoring Railway Infrastructures: A Review towards Smart Concept. Symmetry 2021, 13, 2251. https://doi.org/10.3390/sym13122251
Sasy Chan YW, Wang H-P, Xiang P. Optical Fiber Sensors for Monitoring Railway Infrastructures: A Review towards Smart Concept. Symmetry. 2021; 13(12):2251. https://doi.org/10.3390/sym13122251
Chicago/Turabian StyleSasy Chan, Yung William, Hua-Ping Wang, and Ping Xiang. 2021. "Optical Fiber Sensors for Monitoring Railway Infrastructures: A Review towards Smart Concept" Symmetry 13, no. 12: 2251. https://doi.org/10.3390/sym13122251
APA StyleSasy Chan, Y. W., Wang, H. -P., & Xiang, P. (2021). Optical Fiber Sensors for Monitoring Railway Infrastructures: A Review towards Smart Concept. Symmetry, 13(12), 2251. https://doi.org/10.3390/sym13122251