Dynamics of Characteristic and One-Point Correlation Functions of Multi-Mode Bosonic Systems: Exactly Solvable Model
Abstract
:1. Introduction
2. Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Caruso, F.; Giovannetti, V.; Lupo, C.; Mancini, S. Quantum channels and memory effects. Rev. Mod. Phys. 2014, 86, 1203. [Google Scholar] [CrossRef]
- Carmichael, H. An Open Systems Approach to Quantum Optics; Springer: Berlin/Heidelberg, Germany, 1993; p. 179. [Google Scholar]
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002; p. 625. [Google Scholar]
- Rivas, A.; Huelga, S.F. Open Quantum Systems: An Introduction; SpringerBriefs in Physics; Springer: Berlin/Heidelberg, Germany, 2012; p. 97. [Google Scholar]
- Rivas, Á.; Huelga, S.F.; Plenio, M.B. Quantum non-Markovianity: Characterization, quantification and detection. Rep. Prog. Phys. 2014, 77, 094001. [Google Scholar] [CrossRef] [PubMed]
- de Vega, I.; Alonso, D. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 2017, 89, 015001. [Google Scholar] [CrossRef] [Green Version]
- Kossakowski, A. On quantum statistical mechanics of non-Hamiltonian systems. Rep. Math. Phys. 1972, 3, 247–274. [Google Scholar] [CrossRef]
- Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976, 48, 119–130. [Google Scholar] [CrossRef]
- Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G. Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 1976, 17, 821. [Google Scholar] [CrossRef]
- Pearle, P. Simple derivation of the Lindblad equation. Eur. J. Phys. 2012, 33, 805–822. [Google Scholar] [CrossRef]
- Albash, T.; Boixo, S.; Lidar, D.A.; Zanardi, P. Quantum adiabatic Markovian master equations. New J. Phys. 2012, 14, 123016. [Google Scholar] [CrossRef]
- McCauley, G.; Cruikshank, B.; Bondar, D.I.; Jacobs, K. Accurate Lindblad-form master equation for weakly damped quantum systems across all regimes. npj Quantum Inf. 2020, 6, 74. [Google Scholar] [CrossRef]
- Manzano, D. A short introduction to the Lindblad master equation. AIP Adv. 2020, 10, 025106. [Google Scholar] [CrossRef]
- Arévalo-Aguilar, L.M.; Moya-Cessa, H. Solution to the master equation for a quantized cavity mode. Quantum Semiclassical Opt. J. Eur. Opt. Soc. Part B 1998, 10, 671–674. [Google Scholar] [CrossRef]
- Klimov, A.B.; Romero, J.L. An algebraic solution of Lindblad-type master equations. J. Opt. B Quantum Semiclassical Opt. 2003, 5, S316–S321. [Google Scholar] [CrossRef]
- Lu, H.-X.; Yang, J.; Zhang, Y.-D.; Chen, Z.-B. Algebraic approach to master equations with superoperator generators of su(1, 1) and su(2) Lie algebras. Phys. Rev. A 2003, 67, 024101. [Google Scholar] [CrossRef]
- Tay, B.A.; Petrosky, T. Biorthonormal eigenbasis of a Markovian master equation for the quantum Brownian motion. J. Math. Phys. 2008, 49, 113301. [Google Scholar] [CrossRef] [Green Version]
- Honda, D.; Nakazato, H.; Yoshida, M. Spectral resolution of the Liouvillian of the Lindblad master equation for a harmonic oscillator. J. Math. Phys. 2010, 51, 072107. [Google Scholar] [CrossRef] [Green Version]
- Tay, B. Eigenvalues of the Liouvillians of quantum master equation for a harmonic oscillator. Phys. A Stat. Mech. Its Appl. 2020, 556, 124768. [Google Scholar] [CrossRef]
- Benatti, F.; Floreanini, R. Entangling oscillators through environment noise. J. Phys. A Math. Gen. 2006, 39, 2689–2699. [Google Scholar] [CrossRef]
- Braunstein, S.L.; van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 2005, 77, 513. [Google Scholar] [CrossRef] [Green Version]
- Serafini, A. Quantum Continuous Variables: A Primer of Theoretical Methods; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017; p. 350. [Google Scholar]
- Hiroshima, T. Decoherence and entanglement in two-mode squeezed vacuum states. Phys. Rev. A 2001, 63, 022305. [Google Scholar] [CrossRef] [Green Version]
- Paz, J.P.; Roncaglia, A.J. Dynamics of the Entanglement between Two Oscillators in the Same Environment. Phys. Rev. Lett. 2008, 100, 220401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linowski, T.; Gneiting, C.; Rudnicki, Ł. Stabilizing entanglement in two-mode Gaussian states. Phys. Rev. A 2020, 102, 042405. [Google Scholar] [CrossRef]
- Vendromin, C.; Dignam, M.M. Continuous-variable entanglement in a two-mode lossy cavity: An analytic solution. Phys. Rev. A 2021, 103, 022418. [Google Scholar] [CrossRef]
- Teuber, L.; Scheel, S. Solving the quantum master equation of coupled harmonic oscillators with Lie-algebra methods. Phys. Rev. A 2020, 101, 042124. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S. Real spectra in non-hermitian hamiltonians having symmetry. Phys. Rev. Lett. 1998, 80, 5243. [Google Scholar] [CrossRef] [Green Version]
- Christodoulides, D.; Yang, J. (Eds.) Parity-Time Symmetry and Its Applications, Springer Tracts in Modern Physics; Springer: Singapore, 2018; Volume 280, p. 578. [Google Scholar]
- Heiss, W.D. The physics of exceptional points. J. Phys. A Math. Theor. 2012, 45, 444016. [Google Scholar] [CrossRef]
- Özdemir, Ş.K.; Rotter, S.; Nori, F.; Yang, L. Parity-time symmetry and exceptional points in photonics. Nat. Mater. 2019, 18, 783–798. [Google Scholar] [CrossRef]
- Shearer, M.; Levy, R. Partial Differential Equations: An Introduction to Theory and Applications; Princeton University Press: New Jersey, NJ, USA, 2015; p. 300. [Google Scholar]
- Bender, C.M.; Gianfreda, M.; Klevansky, S.P. Systems of coupledPT-symmetric oscillators. Phys. Rev. A 2014, 90, 022114. [Google Scholar] [CrossRef] [Green Version]
- Tsoy, E.N. Coupled oscillators with parity-time symmetry. Phys. Lett. A 2017, 381, 462–466. [Google Scholar] [CrossRef]
- Xu, X.-W.; Liu, Y.-X.; Sun, C.-P.; Li, Y. Mechanical symmetry in coupled optomechanical systems. Phys. Rev. A 2015, 92, 013852. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, C.; Song, H. Theoretical realization and application of parity-time-symmetric oscillators in a quantum regime. Phys. Rev. A 2017, 95, 023827. [Google Scholar] [CrossRef] [Green Version]
- Gaidash, A.; Kozubov, A.; Miroshnichenko, G. Dissipative dynamics of quantum states in the fiber channel. Phys. Rev. A 2020, 102, 023711. [Google Scholar] [CrossRef]
- Kozubov, A.V.; Gaidash, A.A.; Miroshnichenko, G.P.; Kiselev, A.D. Quantum dynamics of mixed polarization states: Effects of environment-mediated intermode coupling. J. Opt. Soc. Am. B 2021, 38, 2603. [Google Scholar]
- Kiselev, A.D.; Ali, R.; Rybin, A.V. Lindblad Dynamics and Disentanglement in Multi-Mode Bosonic Systems. Entropy 2021, 23, 1409. [Google Scholar] [CrossRef] [PubMed]
- Brody, D.C.; Gibbons, G.W.; Meier, D.M. Time-optimal navigation through quantum wind. New J. Phys. 2015, 17, 033048. [Google Scholar] [CrossRef]
- Brody, D.C.; Longstaff, B. Evolution speed of open quantum dynamics. Phys. Rev. Res. 2019, 1, 033127. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiselev, A.D.; Ali, R.; Rybin, A.V. Dynamics of Characteristic and One-Point Correlation Functions of Multi-Mode Bosonic Systems: Exactly Solvable Model. Symmetry 2021, 13, 2309. https://doi.org/10.3390/sym13122309
Kiselev AD, Ali R, Rybin AV. Dynamics of Characteristic and One-Point Correlation Functions of Multi-Mode Bosonic Systems: Exactly Solvable Model. Symmetry. 2021; 13(12):2309. https://doi.org/10.3390/sym13122309
Chicago/Turabian StyleKiselev, Alexei D., Ranim Ali, and Andrei V. Rybin. 2021. "Dynamics of Characteristic and One-Point Correlation Functions of Multi-Mode Bosonic Systems: Exactly Solvable Model" Symmetry 13, no. 12: 2309. https://doi.org/10.3390/sym13122309
APA StyleKiselev, A. D., Ali, R., & Rybin, A. V. (2021). Dynamics of Characteristic and One-Point Correlation Functions of Multi-Mode Bosonic Systems: Exactly Solvable Model. Symmetry, 13(12), 2309. https://doi.org/10.3390/sym13122309