The Influence of Mental Imagery Expertise of Pen and Paper Players versus Computer Gamers upon Performance and Electrocortical Correlates in a Difficult Mental Rotation Task
Abstract
:1. Introduction
1.1. Visual Imagery and Pen and Paper Role-Playing
1.2. Frontal Theta
1.3. Parietal Alpha and Parietal Alpha Asymmetry
2. Materials and Methods
2.1. Ethical Statement
2.2. Participants
2.3. Procedure
2.4. Paradigm
2.5. Apparatus
2.5.1. EEG Recording and Pre-Processing
2.5.2. Trait Questionnaires and Demographical Data
2.6. Statistical Analysis
3. Results
3.1. Demographical Data
3.2. Electrocortical Signal Prediction
3.3. Behavioral Prediction
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Demographical Data
Variable | Role-Playing Type | N | Mean | Median | SD | Minimum | Maximum | t | p |
---|---|---|---|---|---|---|---|---|---|
age | computer | 15 | 23.2 | 22 | 3.212 | 19 | 30 | ||
pen and paper | 15 | 26.867 | 26 | 4.307 | 22 | 39 | −2.643 | 0.013 | |
years role-playing | computer | 15 | 10 | 10 | 3.485 | 5 | 18 | ||
pen and paper | 15 | 9.867 | 9 | 5.423 | 2 | 21 | 0.08 | 0.937 | |
hours per month role-playing | computer | 15 | 50.5 | 35 | 51.463 | 5 | 200 | ||
pen and paper | 15 | 22 | 20 | 18.186 | 5 | 80 | 2.022 | 0.053 | |
times per month role-playing | computer | 15 | 12.75 | 12 | 8.649 | 3 | 30 | ||
pen and paper | 15 | 3.3 | 3 | 1.953 | 1 | 8 | 4.128 | <0 .001 | |
reading time per month in hours | computer | 15 | 17.967 | 10 | 17.919 | 0 | 60 | ||
pen and paper | 15 | 23.933 | 15 | 22.795 | 1 | 80 | −0.797 | 0.432 | |
movie and TV time per month in hours | computer | 15 | 35.833 | 30 | 27.424 | 0 | 90 | ||
pen and paper | 15 | 26.333 | 20 | 22.35 | 5 | 90 | 1.04 | 0.307 | |
computer playing time per month in hours | computer | 15 | 68.833 | 40 | 84.128 | 0 | 350 | ||
pen and paper | 15 | 26.3 | 15 | 37.113 | 0 | 120 | 1.792 | 0.084 | |
Tetris and similar games time per month in hours | computer | 15 | 0.284 | 0 | 0.7 | 0 | 2 | ||
pen and paper | 15 | 2.367 | 0 | 4.592 | 0 | 15 | −1.737 | 0.093 | |
behavioral inhibition | computer | 15 | 2.267 | 2.143 | 0.503 | 1.571 | 3.143 | ||
pen and paper | 15 | 2.19 | 2 | 0.528 | 1.429 | 3.429 | 0.405 | 0.689 | |
behavioral activation | computer | 15 | 1.954 | 1.923 | 0.341 | 1.462 | 2.769 | ||
pen and paper | 15 | 2.082 | 2.154 | 0.27 | 1.538 | 2.385 | −1.14 | 0.264 | |
neuroticism | computer | 15 | 1.711 | 1.5 | 0.813 | 0.333 | 3.25 | ||
pen and paper | 15 | 1.817 | 1.917 | 0.622 | 0.667 | 3.083 | −0.399 | 0.693 | |
extraversion | computer | 15 | 2.148 | 2.25 | 0.66 | 0.417 | 3.167 | ||
pen and paper | 15 | 2.276 | 2.167 | 0.748 | 1.083 | 3.333 | −0.498 | 0.622 | |
openness | computer | 15 | 2.694 | 3 | 0.563 | 1.75 | 3.5 | ||
pen and paper | 15 | 3.106 | 3.167 | 0.343 | 2.25 | 3.5 | −2.415 | 0.023 | |
agreeableness | computer | 15 | 2.606 | 2.5 | 0.5 | 1.833 | 3.583 | ||
pen and paper | 15 | 2.611 | 2.667 | 0.511 | 1.667 | 3.333 | −0.03 | 0.976 | |
conscientiousness | computer | 15 | 2.417 | 2.5 | 0.684 | 1.333 | 3.25 | ||
pen and paper | 15 | 2.433 | 2.417 | 0.547 | 1.583 | 3.583 | −0.074 | 0.942 | |
IQ | computer | 15 | 110.267 | 110 | 8.648 | 98 | 124 | ||
pen and paper | 15 | 117.733 | 118 | 12.736 | 96 | 137 | −1.878 | 0.071 | |
depression | computer | 15 | 17.733 | 14 | 11.448 | 3 | 34 | ||
pen and paper | 15 | 12.067 | 9 | 9.483 | 3 | 42 | 1.476 | 0.151 |
References
- Gardony, A.L.; Eddy, M.D.; Brunyé, T.T.; Taylor, H.A. Cognitive strategies in the mental rotation task revealed by EEG spectral power. Brain Cogn. 2017, 118, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Shepard, R.N.; Metzler, J. Mental Rotation of Three-Dimensional. Objects. Sci. 1971, 171, 701–703. [Google Scholar] [CrossRef] [Green Version]
- Geiser, C.; Lehmann, W.; Eid, M. Separating “Rotators” from “Nonrotators” in the Mental Rotations Test: A Multigroup Latent Class Analysis. Multivar. Behav. Res. 2006, 41, 261–293. [Google Scholar] [CrossRef] [Green Version]
- Linn, M.C.; Petersen, A.C. Emergence and Characterization of Sex Differences in Spatial Ability: A Meta-Analysis. Child Dev. 1985, 56, 1479. [Google Scholar] [CrossRef]
- Gootjes, L.; Bruggeling, E.C.; Magnée, T.; Van Strien, J.W. Sex differences in the latency of the late event-related potential mental rotation effect. NeuroReport 2008, 19, 349–353. [Google Scholar] [CrossRef]
- Jordan, K. Women and men exhibit different cortical activation patterns during mental rotation tasks. Neuropsychologia 2002, 40, 2397–2408. [Google Scholar] [CrossRef]
- Hugdahl, K.; Thomsen, T.; Ersland, L. Sex differences in visuo-spatial processing: An fMRI study of mental rotation. Neuropsychologia 2006, 44, 1575–1583. [Google Scholar] [CrossRef] [PubMed]
- Butler, T.; Imperato-McGinley, J.; Pan, H.; Voyer, D.; Cordero, J.; Zhu, Y.-S.; Stern, E.; Silbersweig, D. Sex differences in mental rotation: Top–down versus bottom–up processing. NeuroImage 2006, 32, 445–456. [Google Scholar] [CrossRef]
- Roberts, J.E.; Bell, M.A. Two- and three-dimensional mental rotation tasks lead to different parietal laterality for men and women. Int. J. Psychophysiol. 2003, 50, 235–246. [Google Scholar] [CrossRef]
- McWilliams, W.; Hamilton, C.J.; Muncer, S.J. On Mental Rotation in Three Dimensions. Percept. Mot. Ski. 1997, 85, 297–298. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, A.C.; Bergner, S.; Schatz, M. Two- vs. Three-Dimensional Presentation of Mental Rotation Tasks: Sex Differences and Effects of Training on Performance and Brain Activation. Intelligence 2010, 38, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Kass, S.J.; Ahlers, R.H.; Dugger, M. Eliminating Gender Differences through Practice in an Applied Visual Spatial Task. Hum. Perform. 1998, 11, 337–349. [Google Scholar] [CrossRef]
- Peters, M.; Laeng, B.; Latham, K.; Jackson, M.; Zaiyouna, R.; Richardson, C. A Redrawn Vandenberg and Kuse Mental Rotations Test—Different Versions and Factors That Affect Performance. Brain Cogn. 1995, 28, 39–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemminger, E. The Mergence of Spaces: Experiences of Reality in Digital Role-Playing Games; Edition Sigma: Berlin, Germany, 2009. [Google Scholar]
- Laws, R. Robin’s Laws of Good Game Mastering; Steve Jackson Games: Austin, TX, USA, 2002. [Google Scholar]
- Cavanagh, J.F.; Zambrano-Vazquez, L.; Allen, J.J.B. Theta lingua franca: A common mid-frontal substrate for action monitoring processes. Psychophysiology 2011, 49, 220–238. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, J.F.; Frank, M.J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 2014, 18, 414–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, L.-T.; Ranganath, C. Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage 2014, 85, 721–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurer, U.; Brem, S.; Liechti, M.; Maurizio, S.; Michels, L.; Brandeis, D. Frontal Midline Theta Reflects Individual Task Performance in a Working Memory Task. Brain Topogr. 2015, 28, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onton, J.; Delorme, A.; Makeig, S. Frontal midline EEG dynamics during working memory. NeuroImage 2005, 27, 341–356. [Google Scholar] [CrossRef] [Green Version]
- Zacks, J.M. Neuroimaging Studies of Mental Rotation: A Meta-analysis and Review. J. Cogn. Neurosci. 2008, 20, 1–19. [Google Scholar] [CrossRef]
- Sack, A.T.; Schuhmann, T. Hemispheric Differences within the Fronto-Parietal Network Dynamics Underlying Spatial Imagery. Front. Psychol. 2012, 3, 214. [Google Scholar] [CrossRef] [Green Version]
- Sasaoka, T.; Mizuhara, H.; Inui, T. Dynamic Parieto-premotor Network for Mental Image Transformation Revealed by Simultaneous EEG and fMRI Measurement. J. Cogn. Neurosci. 2014, 26, 232–246. [Google Scholar] [CrossRef] [Green Version]
- Stern, J.M. Simultaneous EEG and fMRI of the alpha rhythm. NeuroReport 2002, 13, 2487–2492. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Feige, B.; Scheffler, K.; Esposito, F.; Di Salle, F.; Hennig, J.; Seifritz, E. Cortical and Subcortical Correlates of Electroencephalographic Alpha Rhythm Modulation. J. Neurophysiol. 2005, 93, 2864–2872. [Google Scholar] [CrossRef]
- Gonçalves, S.; de Munck, J.; Pouwels, P.; Schoonhoven, R.; Kuijer, J.; Maurits, N.; Hoogduin, J.; Van Someren, E.; Heethaar, R.; da Silva, F.L. Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: Inter-subject variability. NeuroImage 2006, 30, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Göritz, A.S.; Birnbaum, M.H. Generic HTML Form Processor: A versatile PHP script to save Web-collected data into a MySQL database. Behav. Res. Methods 2005, 37, 703–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, J. Helden Im Geiste: Visuelle Vorstellung Bei Pen & Paper—Rollenspielern—Eine EEG—Studie; Heroes in Mind: Visual Imagery in Pen & Paper Role-Players -An EEG Study; Julius-Maximilians-Universität Würzburg: Würzburg, Germany, 2012. [Google Scholar]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.; Weiß, M.; Hewig, J.; Allen, J.J.B. EPOS: EEG Processing Open-Source Scripts. Front. Neurosci. 2021, 15, 663. [Google Scholar] [CrossRef]
- Makeig, S.; Debener, S.; Onton, J.; Delorme, A. Mining Event-Related Brain Dynamics. Trends Cogn. Sci. 2004, 8, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Chaumon, M.; Bishop, D.V.M.; Busch, N.A. A Practical Guide to the Selection of Independent Components of the Electroencephalogram for Artifact Correction. J. Neurosci. Methods 2015, 250, 47–63. [Google Scholar] [CrossRef]
- Mognon, A.; Jovicich, J.; Bruzzone, L.; Buiatti, M. ADJUST: An Automatic EEG Artifact Detector Based on the Joint Use of Spatial and Temporal Features. Psychophysiology 2011, 48, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Winkler, I.; Haufe, S.; Tangermann, M. Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals. Behav. Brain Funct. 2011, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, M.X. Analyzing Neural Time Series Data Theory and Practice, 1st ed.; The MIT Press: Cambridge, MA, USA; London, UK, 2014. [Google Scholar]
- Carver, C.S.; White, T.L. Behavioral Inhibition, Behavioral Activation, and Affective Responses to Impending Reward and Punishment: The BIS/BAS Scales. J. Pers. Soc. Psychol. 1994, 67, 319–333. [Google Scholar] [CrossRef]
- Costa, P.T.; McCrae, R.R. Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI); Psychological Assessment Resources: Odessa, FL, USA, 1992. [Google Scholar]
- Lehrl, S. MWT-B—Mehrfachwahl-Wortschatz-Intelligenztest; Balingen Spitta-Verlag: Balingen, Germany, 2005. [Google Scholar]
- Hautzinger, M.; Bailer, M. ADS—Allgemeine Depressionsskala; Hogrefe Verlag: Göttingen, Germany, 1993. [Google Scholar]
- The Jamovi Project. Jamovi, Version 1.8. Computer Software. 2021. Available online: https://www.jamovi.org (accessed on 20 July 2021).
- Marks, D.F.; Isaac, A.R. Topographical Distribution of EEG Activity Accompanying Visual and Motor Imagery in Vivid and Non-Vivid Imagers. Br. J. Psychol. 1995, 86, 271–282. [Google Scholar] [CrossRef]
- Johnson, B.W.; McKenzie, K.J.; Hamm, J.P. Cerebral Asymmetry for Mental Rotation: Effects of Response Hand, Handedness and Gender. Neuroreport 2002, 13, 1929–1932. [Google Scholar] [CrossRef] [PubMed]
- Foxe, J.J.; Snyder, A.C. The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism during Selective Attention. Front. Psychol. 2011, 2, 154. [Google Scholar] [CrossRef] [Green Version]
- Kelly, S.P.; Lalor, E.C.; Reilly, R.B.; Foxe, J.J. Increases in Alpha Oscillatory Power Reflect an Active Retinotopic Mechanism for Distracter Suppression during Sustained Visuospatial Attention. J. Neurophysiol. 2006, 95, 3844–3851. [Google Scholar] [CrossRef]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG Alpha Oscillations: The Inhibition-Timing Hypothesis. Brain Res. Rev. 2007, 53, 63–88. [Google Scholar] [CrossRef]
- Fine, G.A. Shared Fantasy: Role Playing Games as Social Worlds; University of Chicago Press: Chicago, IL, USA, 2002. [Google Scholar]
- Evers, M.; Finn, T. Magische Zeiten (Das Schwarze Auge); Erkrath Fantasy Productions: Erkrath, Germany, 2005. [Google Scholar]
- Pérez-Elvira, R.; Oltra-Cucarella, J.; Carrobles, J.A.; Teodoru, M.; Bacila, C.; Neamtu, B. Individual Alpha Peak Frequency, an Important Biomarker for Live Z-Score Training Neurofeedback in Adolescents with Learning Disabilities. Brain Sci. 2021, 11, 167. [Google Scholar] [CrossRef]
- Ghazi, T.R.; Blacker, K.J.; Hinault, T.T.; Courtney, S.M. Modulation of Peak Alpha Frequency Oscillations During Working Memory Is Greater in Females Than Males. Front. Hum. Neurosci. 2021, 15, 192. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.R.; Veltmeyer, M.D.; Hamilton, R.J.; Simms, E.; Paul, R.; Hermens, D.; Gordon, E. Spontaneous Alpha Peak Frequency Predicts Working Memory Performance across the Age Span. Int. J. Psychophysiol. 2004, 53, 1–9. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, J.; Marzban, D.; Hewig, J. The Influence of Mental Imagery Expertise of Pen and Paper Players versus Computer Gamers upon Performance and Electrocortical Correlates in a Difficult Mental Rotation Task. Symmetry 2021, 13, 2337. https://doi.org/10.3390/sym13122337
Rodrigues J, Marzban D, Hewig J. The Influence of Mental Imagery Expertise of Pen and Paper Players versus Computer Gamers upon Performance and Electrocortical Correlates in a Difficult Mental Rotation Task. Symmetry. 2021; 13(12):2337. https://doi.org/10.3390/sym13122337
Chicago/Turabian StyleRodrigues, Johannes, Dorna Marzban, and Johannes Hewig. 2021. "The Influence of Mental Imagery Expertise of Pen and Paper Players versus Computer Gamers upon Performance and Electrocortical Correlates in a Difficult Mental Rotation Task" Symmetry 13, no. 12: 2337. https://doi.org/10.3390/sym13122337
APA StyleRodrigues, J., Marzban, D., & Hewig, J. (2021). The Influence of Mental Imagery Expertise of Pen and Paper Players versus Computer Gamers upon Performance and Electrocortical Correlates in a Difficult Mental Rotation Task. Symmetry, 13(12), 2337. https://doi.org/10.3390/sym13122337