Complexity and Chimera States in a Network of Fractional-Order Laser Systems
Abstract
:1. Introduction
2. Dynamics of the Fractional-Order Laser System
2.1. System Model
2.2. Solution Based on the Adams-Bashforth-Moulton Algorithm
3. Complexity in the Fractional-Order Laser Chaotic System
3.1. Bifurcation Analysis
3.2. Multiscale Complexity Analysis
4. Network Dynamics of the Fractional-Order Laser Systems
4.1. Building of the Laser Network
Algorithm 1 Find the index of neighbors of node i, the function name is Find Nodes . |
Input:i, K, N Output: ifthen else end if if then else end if |
4.2. Synchronization and Chimera States in the Network
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ichise, M.; Nagayanagi, Y.; Kojima, T. An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. Electroanal. Chem. Interfacial Electrochem. 1971, 33, 253–265. [Google Scholar] [CrossRef]
- Tavazoei, M.S.; Mohammad, H. A proof for non existence of periodic solutions in time invariant fractional order systems. Automatica 2009, 45, 1886–1890. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Su, D.; Bao, W.; Liu, J.; Gong, C. An efficient simulation of the fractional chaotic system and its synchronization. J. Frankl. Inst. 2018, 355, 9072–9084. [Google Scholar] [CrossRef]
- Pano-Azucena, A.D.; Tlelo-Cuautle, E.; Muñoz-Pacheco, J.M.; de la Fraga, L.G. FPGA-based implementation of different families of fractional-order chaotic oscillators applying Grünwald–Letnikov method. Commun. Nonlinear Sci. Numer. Simul. 2019, 72, 516–527. [Google Scholar] [CrossRef]
- He, S.; Santo, B. Epidemic outbreaks and its control using a fractional order model with seasonality and stochastic infection. Phys. Stat. Mech. Its Appl. 2018, 501, 408–417. [Google Scholar] [CrossRef]
- Lin, H.; Matthew, M.V.; Yu, Z. Synchronization of chaotic outputs in multi-transverse-mode vertical-cavity surface-emitting lasers. Opt. Commun. 2013, 309, 242–246. [Google Scholar] [CrossRef]
- Arroyo-Almanza, D.A.; Pisarchik, A.N.; Fischer, I.; Mirasso, C.R.; Soriano, M.C. Spectral properties and synchronization scenarios of two mutually delay-coupled semiconductor lasers. Opt. Commun. 2013, 301, 67–73. [Google Scholar] [CrossRef]
- Gottwald, G.A.; Ian, M. On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 2009, 8, 129–145. [Google Scholar] [CrossRef]
- Rondoni, L.; Ariffin, M.R.K.; Varatharajoo, R.; Mukherjee, S.; Palit, S.K.; Banerjee, S. Optical complexity in external cavity semiconductor laser. Opt. Commun. 2017, 387, 257–266. [Google Scholar] [CrossRef]
- Natiq, H.; Said, M.R.M.; Ariffin, M.R.K.; He, S.; Rondoni, L.; Banerjee, S. Self-excited and hidden attractors in a novel chaotic system with complicated multistability. Eur. Phys. J. Plus 2018, 133, 1–12. [Google Scholar] [CrossRef]
- Natiq, H.; Banerjee, S.; Said, M.R.M. Cosine chaotification technique to enhance chaos and complexity of discrete systems. Eur. Phys. J. Spec. Top. 2019, 228, 185–194. [Google Scholar] [CrossRef]
- Natiq, H.; Kamel Ariffin, M.R.; Asbullah, M.A.; Mahad, Z.; Najah, M. Enhancing Chaos Complexity of a Plasma Model through Power Input with Desirable Random Features. Entropy 2021, 23, 48. [Google Scholar] [CrossRef]
- Bandt, C.; Bernd, P. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef]
- Chen, W.; Zhuang, J.; Yu, W.; Wang, Z. Measuring complexity using fuzzyen, apen, and sampen. Med Eng. Phys. 2009, 31, 61–68. [Google Scholar] [CrossRef]
- Larrondo, H.A.; González, C.M.; Martin, M.T.; Plastino, A.; Rosso, O.A. Intensive statistical complexity measure of pseudorandom number generators. Phys. Stat. Mech. Its Appl. 2005, 356, 133–138. [Google Scholar] [CrossRef]
- Staniczenko, P.P.; Lee, C.F.; Jones, N.S. Rapidly detecting disorder in rhythmic biological signals: A spectral entropy measure to identify cardiac arrhythmias. Phys. Rev. 2009, 79, 011915. [Google Scholar] [CrossRef]
- En-hua, S.; Zhi-jie, C.; Fan-ji, G. Mathematical foundation of a new complexity measure. Appl. Math. Mech. 2005, 26, 1188–1196. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of biological signals. Phys. Rev. 2005, 71, 021906. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Kehui, S.; Huihai, W. Complexity analysis and DSP implementation of the fractional-order Lorenz hyperchaotic system. Entropy 2015, 17, 8299–8311. [Google Scholar] [CrossRef] [Green Version]
- Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.U. Complex networks: Structure and dynamics. Phys. Rep. 2006, 424, 175–308. [Google Scholar] [CrossRef]
- Hai, X.; Ren, G.; Yu, Y.; Xu, C.; Zeng, Y. Pinning synchronization of fractional and impulsive complex networks via event-triggered strategy. Commun. Nonlinear Sci. Numer. Simul. 2020, 82, 105017. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Gerdroodbary, M.B.; Moradi, R.; Shafee, A.; Li, Z. Application of Neural Network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel. Comput. Methods Appl. Mech. Eng. 2019, 344, 1–12. [Google Scholar] [CrossRef]
- Majhi, S.; Bera, B.K.; Ghosh, D.; Perc, M. Chimera states in neuronal networks: A review. Phys. Life Rev. 2019, 28, 100–121. [Google Scholar] [CrossRef]
- Wei, Z.; Parastesh, F.; Azarnoush, H.; Jafari, S.; Ghosh, D.; Perc, M.; Slavinec, M. Nonstationary chimeras in a neuronal network. EPL Europhys. Lett. 2018, 123, 48003. [Google Scholar] [CrossRef]
- Parastesh, F.; Jafari, S.; Azarnoush, H.; Hatef, B.; Namazi, H.; Dudkowski, D. Chimera in a network of memristor-based Hopfield neural network. Eur. Phys. J. Spec. Top. 2019, 228, 2023–2033. [Google Scholar] [CrossRef]
- Martens, E.A. Bistable chimera attractors on a triangular network of oscillator populations. Phys. Rev. E 2010, 82, 016216. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aty, A.H.; Khater, M.M.; Attia, R.A.; Abdel-Aty, M.; Eleuch, H. On the new explicit solutions of the fractional nonlinear space-time nuclear model. Fractals 2020, 28, 2040035. [Google Scholar] [CrossRef]
- Akbar, M.; Nawaz, R.; Ahsan, S.; Nisar, K.S.; Abdel-Aty, A.H.; Eleuch, H. New approach to approximate the solution for the system of fractional order Volterra integro-differential equations. Results Phys. 2020, 19, 103453. [Google Scholar] [CrossRef]
- Wu, G.Z.; Yu, L.J.; Wang, Y.Y. Fractional optical solitons of the space-time fractional nonlinear Schrodinger equation. Optik 2020, 207, 164405. [Google Scholar] [CrossRef]
- Lv, L.; Li, C.; Li, G.; Zhao, G. Cluster synchronization transmission of laser pattern signal in laser network with ring cavity. Sci. Sin. Phys. 2017, 47, 080501. [Google Scholar] [CrossRef]
- Şafak, K.; Xin, M.; Peng, M.Y.; Kärtner, F.X. Synchronous multi-color laser network with daily sub-femtosecond timing drift. Sci. Rep. 2018, 8, 11948. [Google Scholar] [CrossRef]
- Xiang, S.; Wen, A.; Pan, W. Synchronization Regime of Star-Type Laser Network With Heterogeneous Coupling Delays. IEEE Photonics Technol. Lett. 2016, 28, 1988–1991. [Google Scholar] [CrossRef]
- Ahmed, E.; Elgazzar, A.S. On fractional order differential equations model for nonlocal epidemics. Phys. A 2007, 379, 607–614. [Google Scholar] [CrossRef]
- Banerjee, S.; Mukhopadhyay, S.; Rondoni, L. Multi-image encryption based on synchronization of chaotic lasers and iris authentication. Opt. Lasers Eng. 2012, 50, 950–957. [Google Scholar] [CrossRef]
- Banerjee, S.; Saha, P.; Chowdhury, A.R. Chaotic aspects of lasers with host-induced nonlinearity and its control. Phys. Lett. A 2001, 291, 103–114. [Google Scholar] [CrossRef]
- Gorenflo, R. Fractional Calculus: Some Numerical Methods. Courses and Lectures-International Centre for Mechanical Sciences. 1997. Available online: http://www.fracalmo.org/download/rgcism10.pdf (accessed on 20 January 2021).
- Sun, H.H.; Abdelwahab, A.; Onaral, B. Linear approximation of transfer function with a pole of fractional power. IEEE Trans. Autom. Control. 1984, 29, 441–444. [Google Scholar] [CrossRef]
- He, S.; Sun, K.; Wang, H. Synchronisation of fractional-order time delayed chaotic systems with ring connection. Eur. Phys. J. Spec. Top. 2016, 225, 97–106. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z. A Brief Review of Chimera State in Empirical Brain Networks. Front. Physiol. 2020, 11, 724. [Google Scholar] [CrossRef]
- Uy, C.H.; Weicker, L.; Rontani, D.; Sciamanna, M. Optical chimera in light polarization. APL Photonics 2019, 4, 056104. [Google Scholar] [CrossRef]
- Böhm, F.; Zakharova, A.; Schöll, E.; Lüdge, K. Amplitude-phase coupling drives chimera states in globally coupled laser networks. Phys. Rev. E 2015, 91, 040901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Natiq, H.; Banerjee, S.; Sun, K. Complexity and Chimera States in a Network of Fractional-Order Laser Systems. Symmetry 2021, 13, 341. https://doi.org/10.3390/sym13020341
He S, Natiq H, Banerjee S, Sun K. Complexity and Chimera States in a Network of Fractional-Order Laser Systems. Symmetry. 2021; 13(2):341. https://doi.org/10.3390/sym13020341
Chicago/Turabian StyleHe, Shaobo, Hayder Natiq, Santo Banerjee, and Kehui Sun. 2021. "Complexity and Chimera States in a Network of Fractional-Order Laser Systems" Symmetry 13, no. 2: 341. https://doi.org/10.3390/sym13020341
APA StyleHe, S., Natiq, H., Banerjee, S., & Sun, K. (2021). Complexity and Chimera States in a Network of Fractional-Order Laser Systems. Symmetry, 13(2), 341. https://doi.org/10.3390/sym13020341