Application of the Efros Theorem to the Function Represented by the Inverse Laplace Transform of s−μ exp(−sν)
Abstract
:1. Introduction
2. Integral Representations of the Inverse Laplace Transform of
3. Integrals of the Inverse Laplace Transform of with Elementary Functions
4. Integrals of the Inverse Laplace Transform of with the Mitag-Leffler, Error and Volterra Functions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Additional Properties of the Inverse of the Laplace Transform of
References
- Humbert, P. Nouvelle correspondances symboliques. Bull. Soc. Math. 1945, 69, 121–129. [Google Scholar]
- Pollard, H. The representation of exp(−xλ) as a Laplace integral. Bull. Am. Math. Soc. 1946, 52, 908–910. [Google Scholar] [CrossRef] [Green Version]
- Wlodarski, L. Sur une formule de Eftros. Stud. Math. 1952, 13, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Mikusinski, J. Sur les fonctions exponentielles du calcul opératoire. Stud. Math. 1951, 12, 208–224. [Google Scholar] [CrossRef]
- Mikusinski, J. Sur la croissance de la function opérationelle exp(−sαλ). Bull. Acad. Polon. 1953, 4, 423–425. [Google Scholar]
- Mikusinski, J. Sur la function dont la transformée de Laplace est exp(−sαλ). Bull. Acad. Polon. 1958, 6, 691–693. [Google Scholar]
- Mikusinski, J. On the function whose Laplace transform is exp(−sλ). Stud. Math. 1959, 18, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Wintner, A. Cauchy’s stable distributions and an “explicit formula” of Mellin. Am. J. Math. 1956, 78, 819–861. [Google Scholar] [CrossRef]
- Ragab, F.M. The inverse Laplace transform of a exponential function. Comm. Pure Appl. Math. 1958, 11, 115–127. [Google Scholar] [CrossRef]
- Stankovič, B. On the function of E.M. Wright. Publications de L’Institute Mathématique. Nouvelle Série 1970, 10, 113–124. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College Press: London, UK, 2010. [Google Scholar]
- Hanyga, A. Multidimensional solutions of time-fractional diffusion-wave equations. Proc. R. Soc. A 2002, 458, 933–957. [Google Scholar] [CrossRef]
- Barkai, E. Fractional Fokker-Planck equation, solution, and application. Phys. Rev. E 2001, 63, 046118. [Google Scholar] [CrossRef] [Green Version]
- Penson, K.A.; Górska, K. Exact and explicit probability densities for one-sided Lévy stable distribution. Phys. Rev. Lett. 2010, 105, 210604. [Google Scholar] [CrossRef] [Green Version]
- Górska, K.; Penson, K.A. Lévy stable distributions via associated integral transform. J. Math. Phys. 2012, 53, 053302. [Google Scholar] [CrossRef] [Green Version]
- Efros, A.M. Some applications of operational calculus in analysis. Mat. Sb. 1935, 42, 699–705. [Google Scholar]
- Apelblat, A.; Mainardi, F. Application of the Efros theorem to the Wright functions of the second kind and other results. Lect. Notes TICMI 2020, 21, 9–28. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of Integral Transforms; McGraw-Hill: New York, NY, USA, 1954. [Google Scholar]
- Roberts, G.E.; Kaufman, H. Tables of Laplace Transforms; W.B. Saunders Co.: Philadelphia, PA, USA, 1966. [Google Scholar]
- Hladik, J. La Transformation de Laplace a Plusieurs Variables; Masson et Cie Éditeurs: Paris, France, 1969. [Google Scholar]
- Oberhettinger, F.; Badii, L. Tables of Laplace Transforms; Springer: Berlin, Germany, 1973. [Google Scholar]
- Wright, E.M. On the coefficients of power series having exponential singularities. Lond. Math. Soc. 1933, 8, 71–79. [Google Scholar] [CrossRef]
- Wright, E.M. The generalized Bessel function of order greater than one. Quart. J. Math. 1940, 11, 36–48. [Google Scholar] [CrossRef]
- Montroll, E.W.; Bendler, J.T. On Lévy (or stable) distributions and the Williams-Watts model of dielectric relaxation. J. Stat. Phys. 1984, 34, 129–192. [Google Scholar] [CrossRef]
- Zolotarev, V.M. One-dimensional Stable Distributions. Translated from Russian by H.H. McFaden. Am. Math. Soc. 1986. [Google Scholar]
- Mainardi, F. On the initial value problem for the fractional diffusion-wave equation. In Proceedings of the 7th Conference on Waves and Stability in Continuous Media (WASCOM 1993), Bologna, Italy, 4–9 October 1993; Rionero, S., Ruggeri, T., Eds.; World Scientific: Singapore, 1994; pp. 246–251. [Google Scholar]
- Saichev, A.I.; Zaslavsky, G.M. Fractional kinetic equations: Solutions and applications. Chaos 1997, 7, 753–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainardi, F.; Tomirotti, M. Seismitic pulse propagation with constant Q and stable probability distributions. Ann. Geofis. 1997, 40, 1311–1328. [Google Scholar]
- Gorenflo, R.; Luchko, Y.; Mainardi, F. Analytical properties and applications of the Wright functions. Fract. Calc. Appl. Anal. 1999, 2, 383–414. [Google Scholar]
- Mainardi, F.; Luchko, Y.; Pagnini, G. The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 2001, 4, 153–192. [Google Scholar]
- Mainardi, F.; Mura, A.; Pagnini, G.; Gorenflo, R. Fractional relaxation and time- fractional diffusion of distributed order. In Proceedings of the 2ND IFAC Workshop on Fractional Differentiation and its Applications, Porto, Portugal, 19–21 July 2006. [Google Scholar]
- Garg, M.; Rao, A. Fractional extensions of some boundary value problems in oil strata. Proc. India Acad. Sci. (Math. Sci.) 2007, 117, 267–281. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F.; Consiglio, A. The Wright functions of the second kind in Mathematical Physics. Mathematics 2020, 8, 884. [Google Scholar] [CrossRef]
- Apelblat, A. Laplace Transforms and Their Applications; Nova Science Publishers, Inc.: New York, NY, USA, 2012. [Google Scholar]
- Apelblat, A. Differentiation of the Mittag–Leffler functions with respect to parameters in the Laplace transform approach. Mathematics 2020, 8, 657. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Apelblat, A. Volterra Functions; Nova Science Publishers, Inc.: New York, NY, USA, 2008. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apelblat, A.; Mainardi, F. Application of the Efros Theorem to the Function Represented by the Inverse Laplace Transform of s−μ exp(−sν). Symmetry 2021, 13, 354. https://doi.org/10.3390/sym13020354
Apelblat A, Mainardi F. Application of the Efros Theorem to the Function Represented by the Inverse Laplace Transform of s−μ exp(−sν). Symmetry. 2021; 13(2):354. https://doi.org/10.3390/sym13020354
Chicago/Turabian StyleApelblat, Alexander, and Francesco Mainardi. 2021. "Application of the Efros Theorem to the Function Represented by the Inverse Laplace Transform of s−μ exp(−sν)" Symmetry 13, no. 2: 354. https://doi.org/10.3390/sym13020354
APA StyleApelblat, A., & Mainardi, F. (2021). Application of the Efros Theorem to the Function Represented by the Inverse Laplace Transform of s−μ exp(−sν). Symmetry, 13(2), 354. https://doi.org/10.3390/sym13020354