A New Application of Gauss Quadrature Method for Solving Systems of Nonlinear Equations
Abstract
:1. Introduction
2. Three-Step Newton Method
Algorithm 1: Three-Step Newton Method |
Step 1: Select an initial guess and start k from 0. Step 2: Compute |
3. Convergence Analysis
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atkinson, K.E. An Introduction to Numerical Analysis, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1987. [Google Scholar]
- Abbasbandy, S. Extended Newton’s method for a system of nonlinear equations by modified Adomian decomposition method. Appl. Math. Comput. 2005, 170, 648–656. [Google Scholar] [CrossRef]
- Babajee, D.K.R.; Dauhoo, M.Z. An analysis of the properties of the variants of Newton’s method with third order convergence. Appl. Math. Comput. 2006, 183, 659–684. [Google Scholar] [CrossRef]
- Babajee, D.K.R.; Dauhoo, M.Z.; Darvishi, M.T.; Barati, A. A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule. Appl. Math. Comput. 2008, 200, 452–458. [Google Scholar] [CrossRef]
- Babolian, E.; Biazar, J.; Vahidi, A.R. Solution of a system of nonlinear equations by Adomian decomposition method. Appl. Math. Comput. 2004, 150, 847–854. [Google Scholar] [CrossRef]
- Burden, R.L.; Faires, J.D. Numerical Analysis, 7th ed.; PWS Publishing Company: Boston, MA, USA, 2001. [Google Scholar]
- Candelario, G.; Cordero, A.; Torregrosa, J.R. Multipoint Fractional Iterative Methods with (2α+1)th-Order of Convergence for Solving Nonlinear Problems. Mathematics 2020, 8, 452. [Google Scholar] [CrossRef] [Green Version]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s method for functions of several variables. Appl. Math. Comput. 2006, 183, 199–208. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput.. 2007, 190, 686–698. [Google Scholar] [CrossRef]
- Darvishi, M.T.; Barati, A. A third-order Newton-type method to solve systems of nonlinear equations. Appl. Math. Comput. 2007, 187, 630–635. [Google Scholar] [CrossRef]
- Darvishi, M.T.; Barati, A. Super cubic iterative methods to solve systems of nonlinear equations. Appl. Math. Comput. 2007, 188, 1678–1685. [Google Scholar] [CrossRef]
- Darvishi, M.T.; Barati, A. A fourth-order method from quadrature formulae to solve system of nonlinear equations. Appl. Math. Comput. 2007, 188, 257–261. [Google Scholar] [CrossRef]
- Khirallah, M.Q.; Hafiz, M.A. Novel three order methods for solving a system of nonlinear equations. Bull. Math. Sci. Appl. 2012, 2, 1–14. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Araghi, M.A.F. A novel algorithm to evaluate definite integrals by the Gauss-Legendre integration rule based on the stochastic arithmetic: Application in the model of osmosis system. Math. Model. Eng. Prob. 2020, 7, 577–586. [Google Scholar]
- Su, Q.-F. A unified model for solving a system of nonlinear equations. Appl. Math. Comput. 2016, 290, 46–55. [Google Scholar] [CrossRef]
- Liu, Z.-L.; Zheng, Q.; Huag, C.-E. Third- and fifth-order Newton-Guass methods for solving system of nonlinear equations with n variables. Appl. Math. Comput. 2016, 290, 250–257. [Google Scholar]
- Maduh, K. Sixth order Newton-Type method for solving system Of nonlinear equations and its applications. Appl. Math. E-Notes 2017, 17, 221–230. [Google Scholar]
Method | Initial Guess | k | Approximate Solution | q |
---|---|---|---|---|
Problem 1 | ||||
NM | 6 | 2.0 | ||
(4) | 4 | 2.9 | ||
(5) | 4 | 2.9 | ||
(23) | 4 | 3.9 | ||
(25) | 4 | 3.9 | ||
(27) | 4 | 3.9 | ||
Algorithm 1 | 3 | 5.9 | ||
Problem 2 | ||||
NM | 6 | 2.0 | ||
(4) | 4 | 3.0 | ||
(5) | 3.0 | |||
(23) | 4 | 4.0 | ||
(25) | 4 | 4.0 | ||
(27) | 4 | 4.0 | ||
Algorithm 1 | 3 | 5.9 | ||
Problem 3 | ||||
NM | 7 | 2.0 | ||
(4) | 4 | 3.0 | ||
(5) | 4 | 3.0 | ||
(23) | 4 | 3.8 | ||
(25) | 4 | 4.2 | ||
(27) | 4 | 4.2 | ||
Algorithm 1 | 3 | 6.1 | ||
Problem 4 | ||||
NM | 7 | 2.0 | ||
(4) | 5 | 3.0 | ||
(5) | 5 | 3.0 | ||
(23) | 4 | 4.7 | ||
(25) | 4 | 4.1 | ||
(27) | 4 | 4.1 | ||
Algorithm 1 | 3 | 6.3 | ||
Problem 5 | ||||
NM | 7 | 2.0 | ||
(4) | 5 | 3.0 | ||
(5) | 5 | 3.0 | ||
(23) | 4 | 4.5 | ||
(25) | 4 | 4.5 | ||
(27) | 4 | 4.5 | ||
Algorithm 1 | 3 | 6.1 | ||
Problem 6 | ||||
NM | 5 | 2.1 | ||
(4) | 4 | − | 3.3 | |
(5) | 4 | − | 3.3 | |
(23) | 3 | − | 5.5 | |
(25) | 3 | − | 5.5 | |
(27) | 3 | − | 5.5 | |
Algorithm 1 | 3 | − | 6.0 |
Method | k | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
NS-M | q | 1.61121 3.20022 | 2.98531 | 2.99899 | 2.99999 | 3.00000 |
ON-M | q | 1.61111 3.19700 | 2.98555 | 2.99891 | 2.99999 | 3.00000 |
KH-M | q | 1 .61111 3.19921 | 2.98555 | 2.99800 | 2.99999 | 3.00000 |
NG-M | q | 6.44555 3.19711 | 2.98555 | 2.99899 | 2.99999 | 3.00000 |
M(14) | q | 1.64888 5.10032 | 4.99732 | 4.99999 | 5.00000 | 5.00000 |
Alg. 1 | q | 6.10040 | 0 6 0 | - - - | - - - | - - - |
Method | Number of Iterations | Error |
---|---|---|
Newton | 5 | |
M6 | 3 | |
Algorithm 1 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Iqbal, J.; Arif, M.; Khan, A.; Gasimov, Y.S.; Chinram, R. A New Application of Gauss Quadrature Method for Solving Systems of Nonlinear Equations. Symmetry 2021, 13, 432. https://doi.org/10.3390/sym13030432
Srivastava HM, Iqbal J, Arif M, Khan A, Gasimov YS, Chinram R. A New Application of Gauss Quadrature Method for Solving Systems of Nonlinear Equations. Symmetry. 2021; 13(3):432. https://doi.org/10.3390/sym13030432
Chicago/Turabian StyleSrivastava, Hari M., Javed Iqbal, Muhammad Arif, Alamgir Khan, Yusif S. Gasimov, and Ronnason Chinram. 2021. "A New Application of Gauss Quadrature Method for Solving Systems of Nonlinear Equations" Symmetry 13, no. 3: 432. https://doi.org/10.3390/sym13030432
APA StyleSrivastava, H. M., Iqbal, J., Arif, M., Khan, A., Gasimov, Y. S., & Chinram, R. (2021). A New Application of Gauss Quadrature Method for Solving Systems of Nonlinear Equations. Symmetry, 13(3), 432. https://doi.org/10.3390/sym13030432