Space-Time Coupling: Current Concept and Two Examples from Ultrafast Optics Studied Using Exact Solution of EM Equations
Abstract
:1. Introduction
2. Materials and Methods
2.1. What Does the Concept of Spatio-Temporal Couplings Mean in the Theory of EM Waves?
2.2. Exact Solutions of Free Space Electromagnetic Wave Equations with Finite Total Energy
2.3. Maximum Energy Density of a Collapsing EM Beam
2.4. Collapsing Shell: “Conventional or Strange Wave”?
2.5. Excitation of a Two-Level Atom Placed at the Center of a Collapsing Beam
3. Results
- (a)
- The concept of space-time couplings of electromagnetic pulses is complemented by the important requirement of finiteness of total pulse energy.
- (b)
- The field of a collapsing electromagnetic beam is found in space and time basing on the exact solution of Maxwell’s equations in terms of the total energy, the spectrum and number of cycles in the incident pulse.
- (c)
- The excitation efficiency of a two-level quantum system placed in the center of a collapsing beam is found with a full account for space-time couplings.
- (d)
- The analysis showed that electromagnetic field distributions originated by solutions of scalar wave equation cannot be single sign (unipolar).
- (e)
- The method to experimentally distinguish between conventional and unipolar pulses is suggested.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Spectral Analysis of a Gaussian Pulse (20) Based on a “Real Signal” Definitions (14)–(19)
References
- Brabec, T.; Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 2000, 72, 545. [Google Scholar] [CrossRef]
- Diels, J.; Rudolph, W. Ultrashort Laser Pulse Phenomena, 2nd ed.; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Weiner, A.M. Ultrafast optical pulse shaping: A tutorial review. Opt. Commun. 2011, 284, 3669–3692. [Google Scholar] [CrossRef]
- Feng, S.; Winful, H.G.; Hellwarth, R.W. Spatiotemporal evolution of focused single-cycle electromagnetic pulses. Phys. Rev. E 1999, 59, 4630. [Google Scholar] [CrossRef]
- Keldysh, L.V. Multiphoton ionization by a very short pulse. Phys. Usp. 2017, 60, 1187–1193. [Google Scholar] [CrossRef] [Green Version]
- Park, S.B.; Kim, K.; Cho, W.; Hwang, S.I.; Ivanov, I.; Nam, C.H.; Kim, K.T. Direct sampling of a light wave in air. Optica 2018, 5, 402–408. [Google Scholar] [CrossRef]
- Hwang, S.I.; Park, S.B.; Mu, J.; Cho, W.; Nam, C.H.; Kim, K.T. Generation of a single-cycle pulse using a two-stage compressor and its temporal characterization using a tunnelling ionization method. Sci. Rep. 2019, 9, 1613. [Google Scholar] [CrossRef] [PubMed]
- Nolte, S.; Schrempel, F.; Dausinger, F. Ultrashort Pusle Laser Technology; Springer International Publishing: New York, NY, USA, 2016. [Google Scholar]
- Sun, H.; Fritz, A.; Dröge, G.; Neuhann, T.; Bille, J.F. Femtosecond-Laser-Assisted Cataract Surgery (FLACS). In High Resolution Imaging in Microscopy and Ophthalmology; Bille, J.F., Ed.; Springer: Cham, Switzerland, 2019; pp. 301–317. [Google Scholar]
- Frei, F.; Galler, A.; Feurer, T. Space-time coupling in femtosecond pulse shaping and its effects on coherent control. Chem. Phys. 2009, 130, 034302. [Google Scholar] [CrossRef]
- Jolly, S.W.; Gobert, O.; Quéré, F. Spatio-temporal characterization of ultrashort laser beams: A tutorial. Optica 2017, 4, 1298–1304. [Google Scholar] [CrossRef]
- Sainte-Marie, A.; Gobert, O.; Quéré, F. Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings. Optica 2017, 4, 1298–1304. [Google Scholar] [CrossRef] [Green Version]
- Lekner, J. Theory of Electromagnetic Pulses; Morgan & Claypool Publishers: San Rafael, CA, USA, 2018. [Google Scholar]
- Zeldovich, Y.B. Number of quanta as an invariant of the classical electromagnetic field. Sov. Phys. Dokl. 1966, 10, 771. [Google Scholar]
- Bialynicki-Birula, I. Photon Wave Number. In Progress in Optics; Wolf, E., Ed.; Elsevier Science: New York, NY, USA, 1996; Volume 36, pp. 245–294. [Google Scholar]
- Feshchenko, R.M.; Vinogradov, A.V. On the number of photons in a classical electromagnetic field. J. Exp. Theor. Phys. 2018, 127, 274–278. [Google Scholar] [CrossRef]
- Feshchenko, R.M.; Vinogradov, A.V. On the number and spin of photons in classical electromagnetic fields. Phys. Scr. 2019, 94, 065501. [Google Scholar] [CrossRef] [Green Version]
- Fedotov, A.M.; Korolev, K.Y.; Legkov, M.V. Exact analytical expression for the electromagnetic field in a focused laser beam or pulse. Proc. SPIE 2007, 6726, 672613. [Google Scholar]
- Shore, B.W. Manipulating of Quantum Structures with Laser Pulses; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Vitanov, N.V.; Shore, B.W. Designer evolution of quantum systems by inverse engineering. J. Phys. B At. Mol. Opt. 2016, 48, 174008. [Google Scholar] [CrossRef]
- Kiselev, A.P. Localized Light Waves: Paraxial and Exact Solutions of the Wave Equation (a Review). Opt. Spectrosc. 2007, 102, 603–622. [Google Scholar] [CrossRef]
- Gonoskov, I.; Aiello, A.; Heugel, S.; Leuchs, G. Dipole pulse theory: Maximizing the field amplitude from 4π focused laser pulses. Phys. Rew. A 2012, 86, 053836. [Google Scholar] [CrossRef]
- Hernández-Figueroa, H.E.; Zamboni-Rached, M.; Recami, E. Non-Diffracting Waves; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Artyukov, I.A.; Dyachkov, N.V.; Feshchenko, R.M.; Vinogradov, A.V. Energy density and spectrum of single-cycle and sub-cycle electromagnetic pulses. Quantum Electron. 2020, 50, 187–194. [Google Scholar] [CrossRef]
- So, I.A.; Plachenov, A.B.; Kiselev, A.P. Unidirectional Single-Cycle and Sub-Cycle Pulses. Opt. Spectrosc. 2020, 128, 2005–2006. [Google Scholar] [CrossRef]
- Bateman, H. The Mathematical Analysis of Electrical and Optical Wave-motion on the Basis of Maxwell’s Equations; Cambridge University Press: Cambridge, UK, 1915. [Google Scholar]
- Zangwill, A. Modern Electrodynamics; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Feynman, R.P.; Leighton, R.B.; Sands, M.L. Solutions of Maxwell’s Equations in Free Space. In The Feynman Lectures on Physics; Addison-Wesley Pub. Co.: Boston, MA, USA, 1964; Volume 2, Chapter 20; p. 4. [Google Scholar]
- Tikhonov, A.N.; Samarskii, A.A. Equations of Mathematical Physics; Dover Publications: New York, NY, USA, 1963. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Spherical Waves. In Fluid Mechanics, 2nd ed.; Pergamon Press: Oxford, UK, 1987; p. 70. [Google Scholar]
- Artyukov, I.A.; Dyachkov, N.V.; Feshchenko, R.M.; Vinogradov, A.V. Collapsing EM wave—A simple model for nonparaxial, quasimonochromatic, single and half-cycle beams. Phys. Scr. 2020, 95, 064006. [Google Scholar] [CrossRef]
- Kay, I.; Silverman, R.A. On the Uncertainty Relation for Real Signals. Inf. Control 1957, 1, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Gabor, D. Theory of communication. Part 1: The analysis of information. J. Inst. Elec. Eng. 1946, 93, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Froula, D.H.; Palastro, J.P.; Turnbull, D.; Davies, A.; Nguyen, L.; Howard, A.; Ramsey, D.; Franke, P.; Bahk, S.-W.; Begishev, I.A.; et al. Flying focus: Spatial and temporal control of intensity for laser-based applications. Phys. Plasmas 2019, 26, 032109. [Google Scholar] [CrossRef]
- Bessonov, E.G. On a class of electromagnetic waves. Zh. Eksp. Teor. Fiz. 1981, 80, 852–858. [Google Scholar]
- Bessonov, E.G. Conventionally strange electromagnetic waves. Nucl. Instr. Meth. A 1991, 308, 135–139. [Google Scholar] [CrossRef]
- Shibata, Y.; Bessonov, E.G. Long Wavelength Broadband Sources of Coherent Radiation. arXiv 1997, arXiv:physics/9708023. [Google Scholar]
- Bratman, V.L.; Jaroszynski, D.A.; Samsonov, S.V.; Savilov, A.V. Generation of ultra-short quasi-unipolar electromagnetic pulses from quasi-planar electron bunches. Nucl. Instr. Meth. A 2001, 475, 436–440. [Google Scholar] [CrossRef]
- Alexeev, V.I.; Bessonov, E.G. Experiments on the generation of long wavelength edge radiation along directions nearly coincident with the axis of a straight section of the “Pakhra” synchrotron. NIM 2001, 173, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, M.; Basler, P.; Borstel, M.V.; Müller, A.S. Analytic calculation of the electric field of a coherent THz pulse. Phys. Rev. Spec. Top. Accel. Beams 2014, 17, 050701. [Google Scholar] [CrossRef] [Green Version]
- Balal, N.; Bratman, V.L.; Savilov, A.V. Peculiarities of the coherent spontaneous synchrotron radiation of dense electron bunches. Phys. Plasmas 2014, 21, 023103. [Google Scholar] [CrossRef]
- Freund, F.T.; Herau, J.A.; Centa, V.A.; Scoville, J. Mechanism of unipolar electromagnetic pulses emitted from the hypocenters of impending earthquakes. Eur. Phys. J. Spec. Top. 2021, 230, 47–65. [Google Scholar] [CrossRef]
- Fedorov, V.M.; Ostashev, V.E.; Tarakanov, V.P.; Ul’yanov, A.V. High power radiators of ultra-short electromagnetic quasi-unipolar pulses. J. Phys. Conf. Ser. 2017, 830, 012020. [Google Scholar] [CrossRef] [Green Version]
- Naumenko, G.; Shevelev, M. First indication of the coherent unipolar diffraction radiation generated by relativistic electrons. JINST 2018, 13, C05001. [Google Scholar] [CrossRef]
- Naumenko, G.; Shevelev, M.; Popov, K.E. Unipolar Cherenkov and Diffraction Radiation of Relativistic Electrons. Phys. Part Nucl. Lett. 2020, 17, 834–839. [Google Scholar] [CrossRef]
- Kim, K.J.; McDonald, K.T.; Stupakov, G.V.; Zolotorev, M.S. A bounded source cannot emit a unipolar electromagnetic wave. arXiv 2000, arXiv:physics/0003064. [Google Scholar]
- Kim, K.J.; McDonald, K.T.; Stupakov, G.V.; Zolotorev, M.S. Comment on “Coherent Acceleration by Subcycle Laser Pulses”. Phys. Rev. Lett. 2000, 84, 3210. [Google Scholar] [CrossRef] [PubMed]
- Arkhipov, R.M.; Pakhomov, A.V.; Arkhipov, M.V.; Babushkin, I.; Tolmachev, Y.A.; Rosanov, N.N. Generation of unipolar pulses in nonlinear media. JETP Lett. 2017, 105, 408–418. [Google Scholar] [CrossRef]
- Plachenov, A.B. Paraxial beams and related solutions of the Helmholtz equation. In Proceedings of the International Conference DAYS ON DIFFRACTION, St. Petersburg, Russia, 25–29 May 2020. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics, 3rd ed.; Pergamon Press: Oxford, UK, 1958. [Google Scholar]
- Jun, Y.; Kimble, H.J.; Katori, H. Quantum State Engineering and Precision Metrology Using State-Insensitive Light Traps. Science 2008, 320, 1734–1738. [Google Scholar]
- Cho, D.; Hong, S.; Lee, M.; Kim, T. A review of silicon microfabricated ion traps for quantum information processing. Micro Nano Syst. Lett. 2015, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wang, Y.; Zhu, C.; Wang, Y.; Zhang, X.; Gao, K.; Zhang, W. Precision measurements with cold atoms and trapped ions. Chin. Phys. B 2020, 29, 093203. [Google Scholar] [CrossRef]
- Ziolkowski, R.W. Exact solutions of the wave equation with complex source locations. J. Math. Phys. 1985, 26, 861. [Google Scholar] [CrossRef]
- Ziolkowski, R.W. Localized Waves: Historical and Personal Perspectives. In Non-Diffracting Waves; Hernández-Figueroa, H.E., Recami, E., Eds.; John Wiley & Sons: New York, NY, USA, 2013; Chapter 2, see [23]. [Google Scholar]
- So, I.A.; Plachenov, A.B.; Kiselev, A.P. Simple unidirectional finite-energy pulses. Phys. Rev. A 2020, 102, 063529. [Google Scholar] [CrossRef]
- Zdagkas, A.; Papasimakis, N.; Savinov, V. Space-time nonseparable pulses: Constructing isodiffracting donut pulses from plane waves and single-cycle pulses. Phys. Rev. A 2020, 102, 063512. [Google Scholar] [CrossRef]
- Lindsay, J. J.M.W. Turner. His Life and Work; Cary, Adams & Mackay: London, UK, 1966. [Google Scholar]
- Nekrasova, E.A. Turner 1775–1851. Moscow, Russia. 1976. Available online: https://www.amazon.com/Nekrasova-Terner-1775-1851-Nekrasov-Turner/dp/B0718YYFZY (accessed on 22 March 2021).
- The National Gallery. Available online: https://www.nationalgallery.org.uk/paintings/joseph-mallord-william-turner-rain-steam-and-speed-the-great-western-railway (accessed on 22 March 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popov, N.L.; Vinogradov, A.V. Space-Time Coupling: Current Concept and Two Examples from Ultrafast Optics Studied Using Exact Solution of EM Equations. Symmetry 2021, 13, 529. https://doi.org/10.3390/sym13040529
Popov NL, Vinogradov AV. Space-Time Coupling: Current Concept and Two Examples from Ultrafast Optics Studied Using Exact Solution of EM Equations. Symmetry. 2021; 13(4):529. https://doi.org/10.3390/sym13040529
Chicago/Turabian StylePopov, Nikolay L., and Alexander V. Vinogradov. 2021. "Space-Time Coupling: Current Concept and Two Examples from Ultrafast Optics Studied Using Exact Solution of EM Equations" Symmetry 13, no. 4: 529. https://doi.org/10.3390/sym13040529
APA StylePopov, N. L., & Vinogradov, A. V. (2021). Space-Time Coupling: Current Concept and Two Examples from Ultrafast Optics Studied Using Exact Solution of EM Equations. Symmetry, 13(4), 529. https://doi.org/10.3390/sym13040529