A Weak Tripled Contraction for Solving a Fuzzy Global Optimization Problem in Fuzzy Metric Spaces
Abstract
:1. Introduction and Preliminaries
- ⋆ is commutative and associative;
- for all ;
- for each so that and then
- (fms 1)
- (fms 2)
- (fms 3)
- (fms 4)
- is left continuous,
- (fms 5)
- itemize
- Convergent to and we write if for every there is so that for all
- A Cauchy sequence if for every there is so that for all If every Cauchy sequence is convergent, then an FMS is called complete.
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eldred, A.A.; Veeramani, P. Existence and convergence of best proximity points. J. Math. Anal. Appl. 2006, 323, 1001–1006. [Google Scholar] [CrossRef] [Green Version]
- Bari, C.D.; Suzuki, T.; Vetro, V. Best proximity points for cyclic Meir–Keeler contractions. Nonlinear Anal. 2008, 69, 3790–3794. [Google Scholar] [CrossRef]
- Choudhury, B.S.; Maity, P. Best proximity point results in generalized metric spaces. Vietnam J. Math. 2016, 44, 339–349. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. Best proximity points for α–ψ—Proximal contractive type mappings and applications. Bull. Sci. Math. 2013, 137, 977–995. [Google Scholar] [CrossRef]
- Jleli, M.; Karapinar, K.; Samet, B. Best proximity point result for MK-proximal contractions. Abstr. Appl. Anal. 2012. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E. Best proximity points of cyclic mappings. Appl. Math. Lett. 2012, 25, 1761–1766. [Google Scholar] [CrossRef] [Green Version]
- Raj, V.S. A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal. 2011, 74, 4804–4808. [Google Scholar]
- Raj, V.S. Best proximity point theorems for non-self mappings. Fixed Point Theory 2013, 14, 447–454. [Google Scholar]
- Sintunavarat, W.; Kumam, P. Coupled best proximity point theorem in metric spaces. Fixed Point Theory Appl. 2012. [Google Scholar] [CrossRef] [Green Version]
- Ilchev, A.; Zlatanov, B. Error estimates for approximation of coupled best proximity points for cyclic contractive maps. Appl. Math. Comput. 2016, 290, 412–425. [Google Scholar] [CrossRef]
- Choudhury, B.S.; Maity, P. Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 2011, 54, 73–79. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- George, A.; Veeramani, P. On some result in fuzzy metric space. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, B.S.; Das, K.; Das, P. Coupled coincidence point results for compatible mappings in partially ordered fuzzy metric spaces. Fuzzy Sets Syst. 2013, 222, 84–97. [Google Scholar] [CrossRef]
- Ćirić, L. Some new results for Banach contractions and Edelstein contractive mappings on fuzzy metric spaces. Chaos Solitons Fractals 2009, 42, 146–154. [Google Scholar] [CrossRef]
- Mihet, D. On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets Syst. 2007, 158, 915–921. [Google Scholar] [CrossRef]
- Saha, P.; Choudhury, B.S.; Das, P. A new contractive mapping principle in fuzzy metric spaces. Bull. Univ. Math. Ital. 2016, 8, 287–296. [Google Scholar] [CrossRef]
- Saha, P.; Guria, S.; Choudhury, B.S. Determining fuzzy distance through non-self fuzzy contractions. Yugosl. J. Oper. Res. 2019. [Google Scholar] [CrossRef] [Green Version]
- Shayanpour, H.; Nematizadeh, A. Some results on common best proximity point in fuzzy metric spaces. Bol. Soc. Paran. Math. 2017, 35, 177–194. [Google Scholar] [CrossRef] [Green Version]
- Vetro, C.; Salimi, P. Best proximity point results in non-Archimedean fuzzy metric spaces. Fuzzy Inf. Eng. 2013, 5, 417–429. [Google Scholar] [CrossRef]
- Choudhury, B.S.; Kundu, K. Two coupled weak contraction theorems in partially ordered metric spaces. RACSAM 2014, 108, 335–351. [Google Scholar] [CrossRef]
- Saha, P.; Choudhury, B.S.; Das, P. Weak coupled coincidence point results having a partially ordering in fuzzy metric spaces. Fuzzy Inf. Eng. 2016, 8, 199–216. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Lakshmikantham, V. Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 1987, 11, 623–632. [Google Scholar] [CrossRef]
- Karapinar, E. Coupled fixed point theorems for nonlinear contractions in cone metric spaces. Comput. Math. Appl. 2010, 59, 3656–3668. [Google Scholar] [CrossRef] [Green Version]
- Luong, N.V.; Thuan, N.X. Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal. 2011, 74, 983–992. [Google Scholar] [CrossRef]
- Hammad, H.A.; la Sen, M.D. A coupled fixed point technique for solving coupled systems of functional and nonlinear integral equations. Mathematics 2019, 7, 634. [Google Scholar] [CrossRef] [Green Version]
- Hammad, H.A.; Albaqeri, D.M.; Rashwan, R.A. Coupled coincidence point technique and its application for solving nonlinear integral equations in RPOCbML spaces. J. Egypt. Math. Soc. 2020, 28, 8. [Google Scholar] [CrossRef] [Green Version]
- Alber, Y.I.; Guerre-Delabrierem, S. Principle of weakly contractive maps in Hilbert spaces. In Operator Theory: Advances and Applications; Birkhauser: Basel, Switzerland, 1997; Volume 98, pp. 7–22. [Google Scholar]
- Zhang, Q.; Song, Y. Fixed point theory for generalized ϕ—Weak contractions. Appl. Math. Lett. 2009, 22, 75–78. [Google Scholar] [CrossRef]
- Cho, Y.J.; Kadelburg, Z.; Saadati, R.; Shatanawi, W. Coupled fixed point theorems under weak contractions. Discrete Dyn. Nat. Soc. 2012. [Google Scholar] [CrossRef]
- Hammad, H.A.; la Sen, M.D. Solution of nonlinear integral equation via fixed point of cyclic —Rational contraction mappings in metric-like spaces. Bull. Braz. Math. Soc. New Ser. 2020, 51, 81–105. [Google Scholar] [CrossRef]
- Hammad, H.A.; la Sen, M.D. Generalized contractive mappings and related results in b-metric-like spaces with an application. Symmetry 2019, 11, 667. [Google Scholar] [CrossRef] [Green Version]
- Berinde, V.; Borcut, M. Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74, 4889–4897. [Google Scholar] [CrossRef]
- Borcut, M.; Berinde, V. Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces. Appl. Math. Comput. 2012, 218, 5929–5936. [Google Scholar]
- Aydi, H.; Abbas, M.; Sintunavarat, W.; Kumam, P. Tripled fixed point of W-compatible mappings in abstract metric spaces. Fixed Point Theory Appl. 2012, 2012, 134. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, Z.; Roshan, J.R.; Parvaneh, V. Existence of a tripled coincidence point in ordered Gb-metric spaces and applications to a system of integral equations. J. Inequal. Appl. 2013, 2013, 453. [Google Scholar] [CrossRef] [Green Version]
- Radenović, S. A note on tripled coincidence and tripled common fixed point theorems in partially ordered metric spaces. Appl. Math. Comput. 2014, 236, 367–372. [Google Scholar] [CrossRef]
- Hammad, H.A.; la Sen, M.D. A technique of tripled coincidence points for solving a system of nonlinear integral equations in POCML spaces. J. Inequal. Appl. 2020, 2020, 211. [Google Scholar] [CrossRef]
- Hammad, H.A.; la Sen, M.D. A tripled fixed point technique for solving a tripled-system of integral equations and Markov process in CCbMS. Adv. Differ. Equ. 2020, 2020, 567. [Google Scholar] [CrossRef]
- Schweizer, B.; Sklar, A. Statistical metric spaces. Pac. J. Math. 1960, 10, 313–334. [Google Scholar] [CrossRef] [Green Version]
- Grabice, M. Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 1988, 27, 385–389. [Google Scholar] [CrossRef]
- López, J.R.; Ramaguera, S. The Hausdorff fuzzy metric on compact sets. Fuzzy Sets Syst. 2004, 147, 273–283. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammad, H.A.; De la Sen, M. A Weak Tripled Contraction for Solving a Fuzzy Global Optimization Problem in Fuzzy Metric Spaces. Symmetry 2021, 13, 565. https://doi.org/10.3390/sym13040565
Hammad HA, De la Sen M. A Weak Tripled Contraction for Solving a Fuzzy Global Optimization Problem in Fuzzy Metric Spaces. Symmetry. 2021; 13(4):565. https://doi.org/10.3390/sym13040565
Chicago/Turabian StyleHammad, Hasanen A., and Manuel De la Sen. 2021. "A Weak Tripled Contraction for Solving a Fuzzy Global Optimization Problem in Fuzzy Metric Spaces" Symmetry 13, no. 4: 565. https://doi.org/10.3390/sym13040565
APA StyleHammad, H. A., & De la Sen, M. (2021). A Weak Tripled Contraction for Solving a Fuzzy Global Optimization Problem in Fuzzy Metric Spaces. Symmetry, 13(4), 565. https://doi.org/10.3390/sym13040565