Boundary Conditions that Remove Certain Ultraviolet Divergences
Abstract
:1. Introduction
2. Nonrelativistic Case
2.1. Simple Model
2.2. Motivation: Probability Transport
2.3. Interior-Boundary Condition
2.4. Why It Works and Why It Is Reasonable
2.5. Comparison to Renormalization
2.6. Other Models and Literature
2.7. Interior-Boundary Conditions for the Dirac Equation
3. Quantum Electrodynamics
3.1. Multi-Time Wave Functions
3.2. Landau and Peierls
3.3. The Problem of Born’s Rule for Photons
- The expression is quadratic in and its derivatives.
- The expression is local, i.e., depends only on and its derivatives at x.
- is future-time-like or -light-like.
- if obeys the free Maxwell equations.
- For a plane wave, agrees with (90) up to a constant factor.
- No choices need to be made, i.e., if the law requires a special gauge or Lorentz frame, then it also specifies this gauge or Lorentz frame.
- The law can be generalized to curved space–time.
4. Detection Time and Boundary Conditions
5. Conclusions
Funding
Conflicts of Interest
References
- Moshinsky, M. Boundary Conditions for the Description of Nuclear Reactions. Phys. Rev. 1951, 81, 347–352. [Google Scholar] [CrossRef]
- Moshinsky, M. Boundary Conditions and Time-Dependent States. Phys. Rev. 1951, 84, 525–532. [Google Scholar] [CrossRef]
- Moshinsky, M. Quantum Mechanics in Fock Space. Phys. Rev. 1951, 84, 533. [Google Scholar] [CrossRef]
- Teufel, S.; Tumulka, R. Hamiltonians Without Ultraviolet Divergence for Quantum Field Theories. Quantum Stud. Math. Found. 2021, 8, 17–35. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.D. Some Special Examples in Renormalizable Field Theory. Phys. Rev. 1954, 95, 1329–1334. [Google Scholar] [CrossRef]
- Schweber, S. An Introduction To Relativistic Quantum Field Theory; Harper and Row: New York, NY, USA, 1961. [Google Scholar]
- Dereziński, J. Van Hove Hamiltonians—Exactly Solvable Models of the Infrared and Ultraviolet Problem. Ann. Henri Poincaré 2003, 4, 713–738. [Google Scholar] [CrossRef]
- Van Hove, L. Les difficultés de divergences pour un modèle particulier de champ quantifié. Physica 1952, 18, 145–159. [Google Scholar] [CrossRef]
- Oppenheimer, J.R. Note on the Theory of the Interaction of Field and Matter. Phys. Rev. 1930, 35, 461–477. [Google Scholar] [CrossRef]
- Lampart, J.; Schmidt, J.; Teufel, S.; Tumulka, R. Particle Creation at a Point Source by Means of Interior-Boundary Conditions. Math. Phys. Anal. Geom. 2018, 21, 12. [Google Scholar] [CrossRef] [Green Version]
- Dürr, D.; Goldstein, S.; Teufel, S.; Tumulka, R.; Zanghì, N. Bohmian Trajectories for Hamiltonians with Interior–Boundary Conditions. J. Stat. Phys. 2020, 180, 34–73. [Google Scholar] [CrossRef] [Green Version]
- Epstein, H.; Glaser, V. The role of locality in perturbation theory. Ann. L’Institut Henri Poincaré A Phys. Théorique 1973, 19, 211–295. [Google Scholar]
- Scharf, G. Finite Quantum Electrodynamics, 2nd ed.; Springer: Berlin, Germany, 1995. [Google Scholar]
- Dell’Antonio, G.; Figari, R.; Teta, A. A brief review on point interactions. In Inverse Problems and Imaging; Bonilla, L.L., Ed.; Lecture Notes in Mathematics 1943; Springer: Berlin, Germany, 2008; pp. 171–189. [Google Scholar]
- Bethe, H.; Peierls, R. Quantum Theory of the Diplon. Proc. R. Soc. Lond. A 1935, 148, 146–156. [Google Scholar]
- Teufel, S.; Tumulka, R. Avoiding Ultraviolet Divergence by Means of Interior–Boundary Conditions. In Quantum Mathematical Physics—A Bridge between Mathematics and Physics; Finster, F., Kleiner, J., Röken, C., Tolksdorf, J., Eds.; Birkhäuser: Basel, Switzerland, 2016; pp. 293–311. [Google Scholar]
- Yafaev, D.R. On a zero-range interaction of a quantum particle with the vacuum. J. Phys. A Math. Gen. 1992, 25, 963–978. [Google Scholar] [CrossRef]
- Schmidt, J.; Tumulka, R. Complex Charges, Time Reversal Asymmetry, and Interior–Boundary Conditions in Quantum Field Theory. J. Phys. A Math. Theor. 2019, 52, 115301. [Google Scholar] [CrossRef] [Green Version]
- Tumulka, R. Interior–Boundary Conditions for Schrödinger Operators on Codimension-1 Boundaries. J. Phys. A Math. Theor. 2020, 53, 155201. [Google Scholar] [CrossRef] [Green Version]
- Lampart, J. A nonrelativistic quantum field theory with point interactions in three dimensions. Ann. Henri Poincaré 2019, 20, 3509–3541. [Google Scholar] [CrossRef] [Green Version]
- Lampart, J.; Schmidt, J. On Nelson-type Hamiltonians and abstract boundary conditions. Commun. Math. Phys. 2019, 376, 629–663. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E. Interaction of nonrelativistic particles with a quantized scalar field. J. Math. Phys. 1964, 5, 1190–1197. [Google Scholar] [CrossRef]
- Keppeler, S.; Sieber, M. Particle creation and annihilation at interior boundaries: One-dimensional models. J. Phys. A Math. Theor. 2016, 49, 125204. [Google Scholar] [CrossRef] [Green Version]
- Lienert, M.; Nickel, L. Multi-time formulation of particle creation and annihilation via interior-boundary conditions. Rev. Math. Phys. 2020, 32, 2050004. [Google Scholar] [CrossRef] [Green Version]
- Thomas, L.E. Multiparticle Schrödinger Hamiltonians with point interactions. Phys. Rev. D 1984, 30, 1233–1237. [Google Scholar] [CrossRef]
- Behrndt, J.; Micheler, T. Elliptic differential operators on Lipschitz domains and abstract boundary value problems. J. Funct. Anal. 2014, 267, 3657–3709. [Google Scholar] [CrossRef] [Green Version]
- Lampart, J. The Renormalised Bogoliubov-Fröhlich Hamiltonian. J. Math. Phys. 2020, 61, 101902. [Google Scholar] [CrossRef]
- Posilicano, A. On the self-adjointness of H + A* + A. Math. Phys. Anal. Geom. 2020, 23, 37. [Google Scholar] [CrossRef]
- Schmidt, J. On a Direct Description of Pseudorelativistic Nelson Hamiltonians. J. Math. Phys. 2019, 60, 102303. [Google Scholar] [CrossRef]
- Schmidt, J. The Massless Nelson Hamiltonian and its Domain. In Mathematical Challenges of Zero-Range Physics; Michelangeli, A., Ed.; Springer: Berlin, Germany, 2021; pp. 57–80. [Google Scholar]
- Georgii, H.-O.; Tumulka, R. Some Jump Processes in Quantum Field Theory. In Interacting Stochastic Systems; Deuschel, J.-D., Greven, A., Eds.; Springer: Berlin, Germany, 2004; pp. 55–73. [Google Scholar]
- Schmidt, J.; Teufel, S.; Tumulka, R. Interior-Boundary Conditions for Many-Body Dirac Operators and Codimension-1 Boundaries. J. Phys. A Math. Theor. 2019, 52, 295202. [Google Scholar] [CrossRef] [Green Version]
- Henheik, J.; Tumulka, R. Interior-Boundary Conditions for the Dirac Equation at Point Sources in 3 Dimensions. arXiv 2020, arXiv:2006.16755. [Google Scholar]
- Tumulka, R. Bohmian Mechanics at Space-Time Singularities. I. Timelike Singularities. J. Geom. Phys. 2019, 145, 103478. [Google Scholar] [CrossRef]
- Chodos, A.; Jaffe, R.L.; Johnson, K.; Thorn, C.B.; Weisskopf, V.F. New extended model of hadrons. Phys. Rev. D 1974, 9, 3471. [Google Scholar] [CrossRef] [Green Version]
- Eddington, A.S. The charge of an electron. Proc. R. Soc. A 1929, 122, 358–369. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Relativistic quantum mechanics. Proc. R. Soc. Lond. A 1932, 136, 453–464. [Google Scholar]
- Lienert, M.; Petrat, S.; Tumulka, R. Multi-time Wave Functions: An Introduction; Springer: Heidelberg, Germany, 2020. [Google Scholar]
- Lill, S.; Nickel, L.; Tumulka, R. Consistency Proof for Multi-Time Schrödinger Equations with Particle Creation and Ultraviolet Cut-Off. Ann. Henri Poincaré 2021, in press. [Google Scholar]
- Petrat, S.; Tumulka, R. Multi-Time Wave Functions for Quantum Field Theory. Ann. Phys. 2014, 345, 17–54. [Google Scholar] [CrossRef] [Green Version]
- Lienert, M.; Tumulka, R. Born’s rule for arbitrary Cauchy surfaces. Lett. Math. Phys. 2020, 110, 753–804. [Google Scholar] [CrossRef] [Green Version]
- Lill, S.; Tumulka, R. Another proof of Born’s rule for arbitrary Cauchy surfaces. 2021; in preparation. [Google Scholar]
- Landau, L.; Peierls, R. Quantenelektrodynamik im Konfigurationsraum. Z. Phys. 1930, 62, 188–200. English translation: Quantum electrodynamics in configuration space. In Selected Scientific Papers of Sir Rudolf Peierls With Commentary; Dalitz, R.H., Peierls, R., Eds.; World Scientific: Singapore, 1997; pp. 71–82. [Google Scholar] [CrossRef]
- Lienert, M.; Tumulka, R. Multi-Time Version of the Landau-Peierls Formulation of Quantum Electrodynamics. 2021; in press. [Google Scholar]
- Bialynicki-Birula, I. On the Wave Function of the Photon. Acta Phys. Pol. 1994, 86, 97–116. [Google Scholar] [CrossRef]
- Kiessling, M.K.-H.; Tahvildar-Zadeh, A.S. On the Quantum-Mechanics of a Single Photon. J. Math. Phys. 2018, 59, 112302. [Google Scholar] [CrossRef] [Green Version]
- Tumulka, R. Distribution of the Time at Which an Ideal Detector Clicks. arXiv 2016, arXiv:1601.03715. [Google Scholar]
- Werner, R. Arrival time observables in quantum mechanics. Ann. L’Institute Henri Poincaré Sect. A 1987, 47, 429–449. [Google Scholar]
- Teufel, S.; Tumulka, R. Existence of Schrödinger Evolution with Absorbing Boundary Condition. arXiv 2019, arXiv:1912.12057. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumulka, R. Boundary Conditions that Remove Certain Ultraviolet Divergences. Symmetry 2021, 13, 577. https://doi.org/10.3390/sym13040577
Tumulka R. Boundary Conditions that Remove Certain Ultraviolet Divergences. Symmetry. 2021; 13(4):577. https://doi.org/10.3390/sym13040577
Chicago/Turabian StyleTumulka, Roderich. 2021. "Boundary Conditions that Remove Certain Ultraviolet Divergences" Symmetry 13, no. 4: 577. https://doi.org/10.3390/sym13040577
APA StyleTumulka, R. (2021). Boundary Conditions that Remove Certain Ultraviolet Divergences. Symmetry, 13(4), 577. https://doi.org/10.3390/sym13040577