Experiment on Activated Carbon Manufactured from Waste Coffee Grounds on the Compressive Strength of Cement Mortars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cement Mortar Composition
2.2. Waste Coffee Grounds
2.3. Activation Process
2.4. Mix Design and Sample Preparation
2.5. Compressive Strength Test
3. Experimental Results
Compressive Strengths of Test Specimens
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Kim, K.; Shin, M.; Cha, S. Combined effects of recycled aggregate and fly ash towards concrete sustainability. Constr. Build. Mater. 2013, 48, 499–507. [Google Scholar] [CrossRef]
- Batayneh, M.; Marie, I.; Asi, I. Use of selected waste materials in concrete mixes. Waste Manag. 2007, 27, 1870–1876. [Google Scholar] [CrossRef]
- Binici, H.; Kaplan, H.; Yilmaz, S. Influence of marble and limestone dusts as additives on some mechanical properties of concrete. Sci. Res. Essay 2007, 2, 372–379. [Google Scholar]
- Chowdhury, B. Investigations into the role of activated carbon in a moisture-blocking cement formulation. J. Therm. Anal. Calorim. 2004, 78, 215–226. [Google Scholar] [CrossRef]
- Mahoutian, M.; Lubell, A.S.; Bindiganavile, V.S. Effect of powdered activated carbon on the air void characteristics of concrete containing fly ash. Constr. Build. Mater. 2015, 80, 84–91. [Google Scholar] [CrossRef]
- Krou, N.J.; Batonneau-Gener, I.; Belin, T.; Mignard, S.; Javierre, I.; Dubois-Brugger, I.; Horgnies, M. Reactivity of volatile organic compounds with hydrated cement paste containing activated carbon. Build. Environ. 2015, 87, 102–107. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Wang, Y.; Yang, C.Y.; Li, G.Q.; Yan, H.C. Study on the Reduction of Radon Exhalation Rates of Concrete with Different Activated Carbon. Key Eng. Mater. 2017, 726, 558–563. [Google Scholar] [CrossRef]
- Newcombe, G.; Dixon, D. Interface Science in Drinking Water Treatment: Theory and Applications; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Benjamin, M.M.; Lawler, D.F. Water Quality Engineering: Physical/Chemical Treatment Processes; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Baquero, M.C.; Giraldo, L.; Moreno, J.C.; Suárez-García, F.; Martínez-Alonso, A.; Tascón, J.M.D. Activated carbons by pyrolysis of coffee bean husks in presence of phosphoric acid. J. Anal. Appl. Pyrolysis 2003, 70, 779–784. [Google Scholar] [CrossRef]
- Boonamnuayvitaya, V.; Chaiya, C.; Tanthapanichakoon, W.; Jarudilokkul, S. Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay. Sep. Purif. Technol. 2004, 35, 11–22. [Google Scholar] [CrossRef]
- Namane, A.; Mekarzia, A.; Benrachedi, K.; Belhaneche-Bensemra, N.; Hellal, A. Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4. J. Hazard. Mater. 2005, 119, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Dias, J.M.; Alvim-Ferraz, M.C.M.; Almeida, M.F.; Rivera-Utrilla, J.; Sánchez-Polo, M. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. J. Environ. Manag. 2007, 85, 833–846. [Google Scholar] [CrossRef]
- Prahas, D.; Kartika, Y.; Indraswati, N.; Ismadji, S. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chem. Eng. J. 2008, 140, 32–42. [Google Scholar] [CrossRef]
- Rufford, T.E.; Hulicova-Jurcakova, D.; Zhu, Z.; Lu, G.Q. Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem. Commun. 2008, 10, 1594–1597. [Google Scholar] [CrossRef]
- Boudrahem, F.; Aissani-Benissad, F.; Aït-Amar, H. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. J. Environ. Manag. 2009, 90, 3031–3039. [Google Scholar] [CrossRef] [PubMed]
- Kante, K.; Nieto-Delgado, C.; Rangel-Mendez, J.R.; Bandosz, T.J. Spent coffee-based activated carbon: Specific surface features and their importance for H2S separation process. J. Hazard. Mater. 2012, 201–202, 141–147. [Google Scholar] [CrossRef] [PubMed]
- ASTM. ASTM C150, Standard Specification for Portland Cement; ASTM: West Conshohocken, PA, USA, 2009. [Google Scholar]
- ASTM. ASTM C33, Standard Specification for Concrete Aggregates; ASTM: West Conshohocken, PA, USA, 2008. [Google Scholar]
- Boonamnuayvitaya, V.; Sae-ung, S.; Tanthapanichakoon, W. Preparation of activated carbons from coffee residue for the adsorption of formaldehyde. Sep. Purif. Technol. 2005, 42, 159–168. [Google Scholar] [CrossRef]
- ASTM. ASTM C109, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in, or 50-mm Cube Specimens); ASTM: West Conshohocken, PA, USA, 2008. [Google Scholar]
- ASTM. ASTM C305, Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency; ASTM: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Justo-Reinoso, I.; Srubar, W.V.; Caicedo-Ramirez, A.; Hernandez, M.T. Fine aggregate substitution by granular activated carbon can improve physical and mechanical properties of cement mortars. Constr. Build. Mater. 2018, 164, 750–759. [Google Scholar] [CrossRef]
- Lekkam, M.; Benmounah, A.; Kadri, E.-H.; Soualhi, H.; Kaci, A. Influence of saturated activated carbon on the rheological and mechanical properties of cementitious materials. Constr. Build. Mater. 2019, 198, 411–422. [Google Scholar] [CrossRef]
- Youn, J.-N.; Sung, C.-Y.; Kim, Y.-I. Physical and mechanical properties of porous concrete using waste activated carbon. J. Korean Soc. Agric. Eng. 2009, 51, 21–27. [Google Scholar]
- Garcés, P.; Fraile, J.; Vilaplana-Ortego, E.; Cazorla-Amorós, D.; Alcocel, E.G.; Andión, L.G. Effect of carbon fibres on the mechanical properties and corrosion levels of reinforced portland cement mortars. Cem. Concr. Res. 2005, 35, 324–331. [Google Scholar] [CrossRef]
- Wang, L.; Aslani, F. Piezoresistivity performance of cementitious composites containing activated carbon powder, nano zinc oxide and carbon fibre. Constr. Build. Mater. 2021, 278, 122375. [Google Scholar] [CrossRef]
- Zeng, Q.H.; Yu, A.B.; Lu, G.Q.; Paul, D.R. Clay-Based Polymer Nanocomposites: Research and Commercial Development. J. Nanosci. Nanotechnol. 2005, 5, 1574–1592. [Google Scholar] [CrossRef] [PubMed]
- Erşan, Y.Ç.; Da Silva, F.B.; Boon, N.; Verstraete, W.; De Belie, N. Screening of bacteria and concrete compatible protection materials. Constr. Build. Mater. 2015, 88, 196–203. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, Z.; Xu, J.; Li, X.; Yao, Y. Compressive Strength and Microstructure of Activated Carbon-fly Ash Cement Composites. Chem. Eng. Trans. 2017, 59, 475–480. [Google Scholar]
Material | Weight Ratio |
---|---|
Portland Cement | 1 |
Dry Graded Sand (−No. 10) | 2.75 |
Water | 0.44 |
Activated Carbon (−No. 10 and +No. 200) | 0, 0.005, 0.01, 0.015, 0.05, and 0.1 |
Activated Carbon (%) by Weight | Compressive Strength (psi) | ||
---|---|---|---|
7 Days | 21 Days | 28 Days | |
0 | 3742.1 | 5316.0 | 5599.5 |
0.5 | 5535.3 | 5743.8 | 6870.6 |
1 | 4344.1 | 5939.4 | 5969.4 |
1.5 | 4203.2 | 5623.5 | 7084.9 |
5 | 2697.2 | N/A | 4413.4 |
10 | 1869.9 | N/A | 2671.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, S.; Lee, S.; Youn, S. Experiment on Activated Carbon Manufactured from Waste Coffee Grounds on the Compressive Strength of Cement Mortars. Symmetry 2021, 13, 619. https://doi.org/10.3390/sym13040619
Na S, Lee S, Youn S. Experiment on Activated Carbon Manufactured from Waste Coffee Grounds on the Compressive Strength of Cement Mortars. Symmetry. 2021; 13(4):619. https://doi.org/10.3390/sym13040619
Chicago/Turabian StyleNa, Sukjoon, Sanghoon Lee, and Sungmin Youn. 2021. "Experiment on Activated Carbon Manufactured from Waste Coffee Grounds on the Compressive Strength of Cement Mortars" Symmetry 13, no. 4: 619. https://doi.org/10.3390/sym13040619
APA StyleNa, S., Lee, S., & Youn, S. (2021). Experiment on Activated Carbon Manufactured from Waste Coffee Grounds on the Compressive Strength of Cement Mortars. Symmetry, 13(4), 619. https://doi.org/10.3390/sym13040619