On the Generalized Laplace Transform
Abstract
:1. Introduction
2. Preliminaries
- (1)
- If there exists at the point , then f is -differentiable at t and .
- (2)
- If , then f is -differentiable at if and only if f is differentiable at t; in this case, we have .
- (1)
- is -differentiable at t for every , and .
- (2)
- If , then is -differentiable at t and .
- (3)
- If and , then is -differentiable at t and .
- (4)
- , for every
- (5)
- , for every
- (6)
- , for every
3. On the Generalized Laplace Transform
- (1)
- Then
- (2)
- If there exists , then
- (1)
- If , then
- (2)
- If and , then
- (3)
- If and , then
- (4)
- If and , then
- (5)
- If and , then
- (6)
- If and , then
- (7)
- If and , then
- (8)
- If and , then
- (9)
- If and , then
- (10)
- If and , then
- (1)
- There exists for every with real part Re.
- (2)
- is continuous on the closed halfplane Re.
- (3)
- is analytic on the open halfplane Re.
- (4)
- If and n is a positive integer, then
4. A Mellin’s Inverse-Type Formula
5. Generalized Harmonic Oscillator
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liouville, J. Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions. J. L’éCole Polytech. 1832, 13, 1–69. [Google Scholar]
- Grünwald, A. Über “begrenzte” Derivation und deren Anwendung. Zangew. Math. Phys. 1867, 12, 441–480. [Google Scholar]
- Letnikov, A.V. Theory of differentiation of an arbitrary order. Mat. Sb. 1868, 3, 1–68. [Google Scholar]
- Riemann, B. Oeuvres Mathématiques de Riemann, 1st ed.; Gauthier-Villars et fils: Paris, France, 1898. [Google Scholar]
- Caputo, M. Elasticitá e Dissipazione, 1st ed.; Zanichelli: Bologna, Italy, 1969. [Google Scholar]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Karci, A. Chain rule for fractional order derivatives. Sci. Innov. 2015, 3, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Guzowska, M.; Odzijewicz, T. A remark on local fractional calculus and ordinary derivatives. Open Math. 2016, 14, 1122–1124. [Google Scholar] [CrossRef]
- Katugampola, V.N. A new fractional derivative with classical properties. J. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Vanterler da C Sousa, J.; Capelas de Oliveira, E. A new truncated M-fractional derivative unifying some fractional derivatives with classical properties. Int. J. Anal. Appl. 2018, 16, 83–96. [Google Scholar]
- Guzman, P.; Langton, G.; Motta, P.; Lugo, L.; Medina, J.; Valdes, N. A new definition of a fractional derivative of local type. J. Math. Anal. 2018, 9, 88–98. [Google Scholar]
- Fleitas, A.; Nápoles Valdés, J.E.; Rodríguez, J.M.; Sigarreta, J.M. Note on the generalized conformable derivative. Rev. Unión Mat. Argent. 2015, in press. (stage of publication). [Google Scholar]
- Oldham, K.; Spanier, J. The Fractional Calculus, Theory and Applications of Differentiation and Integration of Arbitrary Order, 1st ed.; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Miller, K. An Introduction to Fractional Calculus and Fractional Differential Equations, 1st ed.; John Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations, 1st ed.; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Fractional Differential Equations; Elsevier: New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Gómez, J. Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations. Phys. A Stat. Mech. Appl. 2018, 494, 52–75. [Google Scholar] [CrossRef]
- Fleitas, A.; Gómez, J.; Nápoles, J.; Rodríguez, J.M.; Sigarreta, J.M. Analysis of the local Drude model involving the generalized fractional derivative. Opt. Int. J. Light Electron. Opt. 2019, 193, 163008. [Google Scholar] [CrossRef]
- Anastasio, T. The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 1994, 72, 69–79. [Google Scholar] [CrossRef]
- Gerasimov, A.N. A generalization of linear laws of deformation and its application to problems of internal friction. Akad. Nauk SSSR. Prikl. Mat. Meh. 1948, 12, 251–260. [Google Scholar]
- Torvik, P.; Bagley, R. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 1984, 51, 294–298. [Google Scholar] [CrossRef]
- Hammad, M.A.; Khalil, R. Abel’s formula and wronskian for comformable fractional differential equation. Int. J. Differ. Equ. Appl. 2014, 13, 177–183. [Google Scholar]
- Atangana, A.; Baleanu, D.; Alsaedi, A. New properties of conformable derivative. Open Math. 2015, 13, 889–898. [Google Scholar] [CrossRef]
- Baleanu, D.; Asad, J.H.; Jajarmi, A. The fractional model of spring pendulum: New features within different kernels. Proc. Rom. Acad. Ser. A 2018, 19, 447–454. [Google Scholar]
- Hammad, M.A.; Khalil, R. Total fractional differentials with applications to exact fractional differential equations. Int. J. Comput. Math. 2018, 95, 1444–1452. [Google Scholar]
- Baleanu, D.; Jajarmi, A.; Asad, J.H. Classical and fractional aspects of two coupled pendulums. Rom. Rep. Phys. 2019, 71, 103. [Google Scholar]
- Baleanu, D.; Sadat, S.; Jajarmi, A.; Asad, J.H. New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator. Eur. Phys. J. Plus 2019, 134, 181. [Google Scholar] [CrossRef]
- Bosch, P.; Gómez-Aguilar, J.F.; Rodríguez, J.M.; Sigarreta, J.M. Analysis of Dengue fever outbreak by generalized fractional derivative. Fractals 2020, 28, 12. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, Y.; Wang, Y.; Chen, Y.Q. Some Fundamental Properties on the Sampling Free Nabla Laplace Transform. In Proceedings of the 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Anaheim, CA, USA, 18–21 August 2019. [Google Scholar]
- Schiff, J. The Laplace Transform: Theory and Applications, 1st ed.; Springer: New York, NY, USA, 1999. [Google Scholar]
- Widder, D. Laplace Transform, 6th ed.; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Eroglu, B.I.; Avci, D.; Ozdemir, N. Optimal control problem for a conformable fractional heat conduction equation. Acta Phys. Pol. A 2017, 132, 658–662. [Google Scholar] [CrossRef]
- Khan, N.A.; Razzaq, O.A.; Ayaz, M. Some properties and applications of conformable fractional laplace transform. J. Fract. Calc. Appl. 2018, 9, 72–81. [Google Scholar]
- Abdejjawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 247, 1–16. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosch, P.; Carmenate García, H.J.; Rodríguez, J.M.; Sigarreta, J.M. On the Generalized Laplace Transform. Symmetry 2021, 13, 669. https://doi.org/10.3390/sym13040669
Bosch P, Carmenate García HJ, Rodríguez JM, Sigarreta JM. On the Generalized Laplace Transform. Symmetry. 2021; 13(4):669. https://doi.org/10.3390/sym13040669
Chicago/Turabian StyleBosch, Paul, Héctor José Carmenate García, José Manuel Rodríguez, and José María Sigarreta. 2021. "On the Generalized Laplace Transform" Symmetry 13, no. 4: 669. https://doi.org/10.3390/sym13040669
APA StyleBosch, P., Carmenate García, H. J., Rodríguez, J. M., & Sigarreta, J. M. (2021). On the Generalized Laplace Transform. Symmetry, 13(4), 669. https://doi.org/10.3390/sym13040669