Orbit Polynomial of Graphs versus Polynomial with Integer Coefficients
Abstract
:1. Introduction
2. Preliminaries
3. Methods and Results
3.1. Orbit Polynomial
- if and only if .
- if and only if .
- if and only if , where .
3.2. Graph Classification with Respect to Orbit Polynomial
4. Integer Polynomials
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hosoya, H. On some counting polynomials in chemistry, Applications of graphs in chemistry and physics. Discret. Appl. Math. 1988, 19, 239–257. [Google Scholar] [CrossRef] [Green Version]
- Hosoya, H. Topological index, a newly proposed quantity characterizing the topological nautre of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 1971, 44, 2332–2339. [Google Scholar] [CrossRef] [Green Version]
- Hosoya, H. Clar’s aromatic sextet and sextet polynomial. Top. Curr. Chem. 1990, 153, 255–272. [Google Scholar]
- Farrell, E.J. An introduction to matching polynomials. J. Comb. Theory 1979, 27, 75–86. [Google Scholar]
- Gutman, I.; Harary, F. Generalizations of the matching polynomial. Util. Math. 1983, 24, 97–106. [Google Scholar]
- Stevanović, D.; Motoyama, A.; Hosoya, H. King and domino polynomials for polyomino graphs Graph Theory Notes. J. Math. Phys. 1977, 34, 31–36. [Google Scholar]
- Balasubramanian, K.; Ramaraj, R. Computer generation of king and color polynomials of graphs and lattices and their applications to statistical mechanics. J. Comput. Chem. 1985, 6, 447–454. [Google Scholar]
- Farrell, E.J.; De Matas, C.M. On star polynomials of complements of graphs. Ark. Mat. 1989, 26, 85–190. [Google Scholar] [CrossRef]
- Farrell, E.J.; De Matas, C.M. Star polynomials of some families of graphs with small cyclomatic numbers. Util. Math. 1988, 33, 33–45. [Google Scholar]
- Dong, F.M.; Koh, K.M.; Teo, K.L. Chromatic Polynomials and Chromaticity of Graphs; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2005. [Google Scholar]
- Balasubramanian, K. On Graph Theoretical Polynomials in Chemistry. In Mathematical and Computational Concepts in Chemistry; Trinastić, N., Ed.; Ellis Horwood Ltd.: New York, NY, USA, 1986; pp. 20–33. [Google Scholar]
- Dehmer, M.; Chen, Z.; Emmert-Streib, F.; Mowshowitz, A.; Varmuzag, K.; Jodlbauer, H.; Shih, Y.; Tripathi, S.; Tao, J. The orbit-polynomial: A novel measure of symmetry in graphs. IEEE Access 2020, 8, 36100–36112. [Google Scholar] [CrossRef]
- Dehmer, M.; Chen, Z.; Emmert-Streib, F.; Mowshowitz, A.; Shih, Y.; Tripathi, S.; Zhang, Y. Towards detecting structural branching and cyclicity in graphs: A polynomial-based approach. Inf. Sci. 2019, 471, 19–28. [Google Scholar] [CrossRef]
- Dehmer, M.; Shi, Y.; Mowshowitz, A. Discrimination power of graph measures based on complex zeros of the partial Hosoya polynomial. Appl. Math. Comput. 2015, 250, 352–355. [Google Scholar] [CrossRef]
- Dehmer, M.; Ilić, A. Location of zeros of Wiener and distance polynomials. PLoS ONE 2012, 7, e28328. [Google Scholar] [CrossRef] [Green Version]
- Ellis-Monaghan, J.A.; Merino, C. Graph polynomials and their applications I: The Tutte polynomial. In Structural Analysis of Complex Networks; Dehmer, M., Ed.; Birkhäuser: Boston, MA, USA; Basel, Switzerland, 2010; pp. 219–255. [Google Scholar]
- Ghorbani, M.; Dehmer, M.; Cao, S.; Tao, J.; Streib, F. On the zeros of the partial Hosoya polynomial of graphs. Inf. Sci. 2020, 524, 199–215. [Google Scholar] [CrossRef]
- Tikoo, M.L. Location of the zeros of a polynomial. Am. Math. Mon. 1967, 74, 688–690. [Google Scholar] [CrossRef]
- Zilovic, M.S.; Roytman, L.M.; Combettes, P.L.; Swamy, M.N. A bound for the zeros of polynomials. IEEE Trans. Circuits Syst. I 1992, 39, 476–478. [Google Scholar] [CrossRef]
- Trinajstić, N. Chemical Graph Theory; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Ghorbani, M.; Dehmer, M.; Emmert-Streib, F. On the degeneracy of the orbit polynomial and related graph polynomials. Symmetry 2020, 12, 1643. [Google Scholar] [CrossRef]
- Ghorbani, M.; Dehmer, M.; Jalali-Rad, M.; Emmert-Streib, F. Analyzing graphs by means of the orbit polynomial. Submitted.
- Harary, F. Graph Theory; Addison-Wesley Publishing Company: Boston, MA, USA, 1969. [Google Scholar]
- Ghorbani, M.; Dehmer, M.; Rajabi-Parsa, M.; Emmert-Streib, F.; Mowshowitz, A. Hosoya entropy of fullerene graph. Appl. Math. Comput. 2019, 352, 88–98. [Google Scholar] [CrossRef]
- Ghorbani, M.; Dehmer, M.; Rajabi-Parsa, M.; Mowshowitz, A.; Emmert-Streib, F. On Properties of Distance-Based Entropies on Fullerene Graphs. Entropy 2019, 21, 482. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, M.; Dehmer, M.; Mowshowitz, A.; Emmert-Streib, F. The Hosoya entropy of graphs revisited. Symmetry 2019, 11, 1013. [Google Scholar] [CrossRef] [Green Version]
- Mowshowitz, A. Entropy and the complexity of graphs: I. An index of the relative complexity of a graph. Bull. Math. Biophys. 1968, 30, 175–204. [Google Scholar] [CrossRef] [PubMed]
- Mowshowitz, A.; Dehmer, M. The Hosoya entropy of a graph. Entropy 2015, 17, 1054–1062. [Google Scholar] [CrossRef] [Green Version]
- MacArthur, B.D.; Sánchez-García, R.J.; Anderson, J.W. Symmetry in complex networks. Disc. Appl. Math. 2008, 156, 3525–3531. [Google Scholar] [CrossRef] [Green Version]
Partition | |
---|---|
6 = 6 | |
6 = 1 + 5 | |
6 = 1 + 1 + 4 | |
6 = 2 + 4 | |
6 = 1 + 1 + 1 + 3 | |
6 = 1 + 2 + 3 | |
3 + 3 | |
6 = 1 + 1 + 1 + 1 + 2 | |
6 = 1 + 1 + 2 + 2 | |
6 = 2 + 2 + 2 | |
6 = 1 + 1 + 1 + 1 + 1 + 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghorbani, M.; Jalali-Rad, M.; Dehmer, M. Orbit Polynomial of Graphs versus Polynomial with Integer Coefficients. Symmetry 2021, 13, 710. https://doi.org/10.3390/sym13040710
Ghorbani M, Jalali-Rad M, Dehmer M. Orbit Polynomial of Graphs versus Polynomial with Integer Coefficients. Symmetry. 2021; 13(4):710. https://doi.org/10.3390/sym13040710
Chicago/Turabian StyleGhorbani, Modjtaba, Maryam Jalali-Rad, and Matthias Dehmer. 2021. "Orbit Polynomial of Graphs versus Polynomial with Integer Coefficients" Symmetry 13, no. 4: 710. https://doi.org/10.3390/sym13040710
APA StyleGhorbani, M., Jalali-Rad, M., & Dehmer, M. (2021). Orbit Polynomial of Graphs versus Polynomial with Integer Coefficients. Symmetry, 13(4), 710. https://doi.org/10.3390/sym13040710