Application of Interval Fuzzy Logic in Selecting a Sustainable Supplier on the Example of Agricultural Production
Abstract
:1. Introduction
2. Literature Review
3. Methodology
4. Results
4.1. IVF PIPRECIA Method
4.2. MABAC IVF Method
5. Case Study
6. Results
7. Validation of Results and Sensitivity Analysis
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muller, A.; Ferré, M.; Engel, S.; Gattinger, A.; Holzkämper, A.; Huber, R.; Muller, M.; Six, J. Can soil-less crop production be a sustainable option for soil conservation and future agriculture? Land Use Policy 2017, 69, 102–105. [Google Scholar] [CrossRef]
- Shameer, S.; Prasad, T.N.V.K.V. Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regul. 2018, 84, 603–615. [Google Scholar] [CrossRef]
- Amiri, M.; Hashemi-Tabatabaei, M.; Ghahremanloo, M.; Keshavarz-Ghorabaee, M.; Zavadskas, E.K.; Banaitis, A. A new fuzzy BWM approach for evaluating and selecting a sustainable supplier in supply chain management. Int. J. Sustain. Dev. World Ecol. 2021, 28, 125–142. [Google Scholar] [CrossRef]
- Kazimieras Zavadskas, E.; Turskis, Z.; Stević, Ž.; Mardani, A. Modelling procedure for the selection of steel pipes supplier by applying fuzzy AHP method. Oper. Res. Eng. Sci. Theory Appl. 2020, 3, 39–53. [Google Scholar] [CrossRef]
- Stević, Ž.; Pamučar, D.; Puška, A.; Chatterjee, P. Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement Alternatives and Ranking according to COmpromise Solution (MARCOS). Comput. Ind. Eng. 2020, 140, 106231. [Google Scholar] [CrossRef]
- Stojanović, I.; Puška, A. Logistics Performances of Gulf Cooperation Council’s Countries in Global Supply Chains. Decis. Mak. Appl. Manag. Eng. 2021, 4, 174–193. [Google Scholar] [CrossRef]
- Durmić, E. Evaluation of criteria for sustainable supplier selection using FUCOM method. Oper. Res. Eng. Sci. Theory Appl. 2019, 2, 91–107. [Google Scholar] [CrossRef]
- Peng, J.-j.; Tian, C.; Zhang, W.-y.; Zhang, S.; Wang, J.-q. An integrated multi-criteria decision-making framework for sustainable supplier selection under picture fuzzy environment. Technol. Econ. Dev. Econ. 2020, 26, 573–598. [Google Scholar] [CrossRef] [Green Version]
- Durmić, E.; Stević, Ž.; Chatterjee, P.; Vasiljević, M.; Tomašević, M. Sustainable supplier selection using combined FUCOM–Rough SAW model. Rep. Mech. Eng. 2020, 1, 34–43. [Google Scholar] [CrossRef]
- Ecer, F.; Pamucar, D. Sustainable supplier selection: A novel integrated fuzzy best worst method (F-BWM) and fuzzy CoCoSo with Bonferroni (CoCoSo’B) multi-criteria model. J. Clean. Prod. 2020, 266, 121981. [Google Scholar] [CrossRef]
- Negash, Y.T.; Kartika, J.; Tseng, M.-L.; Tan, K. A novel approach to measure product quality in sustainable supplier selection. J. Clean. Prod. 2020, 252, 119838. [Google Scholar] [CrossRef]
- Gören, H.G. A decision framework for sustainable supplier selection and order allocation with lost sales. J. Clean. Prod. 2018, 183, 1156–1169. [Google Scholar] [CrossRef]
- You, S.-Y.; Zhang, L.-J.; Xu, X.-G.; Liu, H.-C. A New Integrated Multi-Criteria Decision Making and Multi-Objective Programming Model for Sustainable Supplier Selection and Order Allocation. Symmetry 2020, 12, 302. [Google Scholar] [CrossRef] [Green Version]
- Meksavang, P.; Shi, H.; Lin, S.-M.; Liu, H.-C. An Extended Picture Fuzzy VIKOR Approach for Sustainable Supplier Management and Its Application in the Beef Industry. Symmetry 2019, 11, 468. [Google Scholar] [CrossRef] [Green Version]
- Hendiani, S.; Liao, H.; Ren, R.; Lev, B. A likelihood-based multi-criteria sustainable supplier selection approach with complex preference information. Inf. Sci. 2020, 536, 135–155. [Google Scholar] [CrossRef]
- Xu, Z.; Qin, J.; Liu, J.; Martínez, L. Sustainable supplier selection based on AHPSort Ⅱ in interval type-2 fuzzy environment. Inf. Sci. 2019, 483, 273–293. [Google Scholar] [CrossRef]
- Puška, A.; Kozarević, S.; Stević, Ž.; Stovrag, J. A New Way of Applying Interval Fuzzy Logic in Group Decision Making For Supplier Selection. Econ. Comput. Econ. Cybern. Stud. Res. 2018, 52, 217–234. [Google Scholar] [CrossRef]
- Wang, C.-N.; Yang, C.-Y.; Cheng, H.-C. A Fuzzy Multicriteria Decision-Making (MCDM) Model for Sustainable Supplier Evaluation and Selection Based on Triple Bottom Line Approaches in the Garment Industry. Processes 2019, 7, 400. [Google Scholar] [CrossRef] [Green Version]
- Moheb-Alizadeh, H.; Handfield, R. Sustainable Supplier Selection and Order Allocation: A Novel Multi-Objective Programming Model with a Hybrid Solution Approach. Comput. Ind. Eng. 2019, 129, 192–209. [Google Scholar] [CrossRef]
- Pishchulov, G.; Trautrims, A.; Chesney, T.; Gold, S.; Schwab, L. The Voting Analytic Hierarchy Process Revisited: A Revised Method with Application to Sustainable Supplier Selection. Int. J. Prod. Econ. 2019, 211, 166–179. [Google Scholar] [CrossRef]
- Abdel-Baset, M.; Chang, V.; Gamal, A.; Smarandache, F. An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field. Comput. Ind. 2019, 106, 94–110. [Google Scholar] [CrossRef]
- Stević, Ž.; Durmić, E.; Gajić, M.; Pamučar, D.; Puška, A. A Novel Multi-Criteria Decision-Making Model: Interval Rough SAW Method for Sustainable Supplier Selection. Information 2019, 10, 292. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Ming, X.; Zhou, T.; Chang, Y. Sustainable supplier selection for smart supply chain considering internal and external uncertainty: An integrated rough-fuzzy approach. Appl. Soft Comput. 2020, 87, 106004. [Google Scholar] [CrossRef]
- Mohammed, A.; Harris, I.; Kannan, G. A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation. Int. J. Prod. Econ. 2019, 217, 171–184. [Google Scholar] [CrossRef]
- Khoshfetrat, S.; Rahiminezhad Galankashi, M.; Almasi, M. Sustainable supplier selection and order allocation: A fuzzy approach. Eng. Optim. 2020, 52, 1494–1507. [Google Scholar] [CrossRef]
- Li, J.; Fang, H.; Song, W. Sustainable supplier selection based on SSCM practices: A rough cloud TOPSIS approach. J. Clean. Prod. 2019, 222, 606–621. [Google Scholar] [CrossRef]
- Zeng, S.; Hu, Y.; Balezentis, T.; Streimikiene, D. A multi-criteria sustainable supplier selection framework based on neutrosophic fuzzy data and entropy weighting. Sustain. Dev. 2020, 28, 1431–1440. [Google Scholar] [CrossRef]
- Memari, A.; Dargi, A.; Akbari Jokar, M.R.; Ahmad, R.; Abdul Rahim, A.R. Sustainable supplier selection: A multi-criteria intuitionistic fuzzy TOPSIS method. J. Manuf. Syst. 2019, 50, 9–24. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.; Qin, J. An integrated ANP-VIKOR methodology for sustainable supplier selection with interval type-2 fuzzy sets. Granul. Comput. 2018, 3, 193–208. [Google Scholar] [CrossRef]
- Rabbani, M.; Foroozesh, N.; Mousavi, S.M.; Farrokhi-Asl, H. Sustainable supplier selection by a new decision model based on interval-valued fuzzy sets and possibilistic statistical reference point systems under uncertainty. Int. J. Syst. Sci. Oper. Logist. 2019, 6, 162–178. [Google Scholar] [CrossRef]
- Liu, H.-C.; Quan, M.-Y.; Li, Z.; Wang, Z.-L. A new integrated MCDM model for sustainable supplier selection under interval-valued intuitionistic uncertain linguistic environment. Inf. Sci. 2019, 489, 254–270. [Google Scholar] [CrossRef]
- Despic, D.; Bojović, N.; Kilibarda, M.; Kapetanović, M. Assessment of efficiency of military transport units using the DEA and SFA methods. Vojnoteh. Glas./Mil. Tech. Cour. 2019, 67, 68–92. [Google Scholar] [CrossRef]
- Gorzalczany, M.B. A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst. 1987, 21, 1–17. [Google Scholar] [CrossRef]
- Kushwaha, D.K.; Panchal, D.; Sachdeva, A. Risk analysis of cutting system under intuitionistic fuzzy environment. Rep. Mech. Eng. 2020, 1, 162–173. [Google Scholar] [CrossRef]
- Stanujkić, D.; Zavadskas, E.K.; Karabasevic, D.; Smarandache, F.; Turskis, Z. The use of the PIvot Pairwise RElative Criteria Importance Assessment (PIPRECIA) method for determining the weights of criteria. Rom. J. Econ. Forecast. 2017, 20, 118–136. [Google Scholar]
- Bozanic, D.; Randjelovic, A.; Radovanovic, M.; Tesic, D. A hybrid LBWA—IR-MAIRCA multi-criteria decision-making model for determination of constructive elements of weapons. Facta Univ. Ser. Mech. Eng. 2020, 18, 399–418. [Google Scholar] [CrossRef]
- Pamučar, D.; Ćirović, G. The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert Syst. Appl. 2015, 42, 3016–3028. [Google Scholar] [CrossRef]
- Đalić, I.; Stević, Ž.; Karamasa, C.; Puška, A. A novel integrated fuzzy PIPRECIA—interval rough SAW model: Green supplier selection. Decis. Mak. Appl. Manag. Eng. 2020, 3, 126–145. [Google Scholar] [CrossRef]
- Puška, A.; Pamucar, D.; Stojanović, I.; Cavallaro, F.; Kaklauskas, A.; Mardani, A. Examination of the Sustainable Rural Tourism Potential of the Brčko District of Bosnia and Herzegovina Using a Fuzzy Approach Based on Group Decision Making. Sustainability 2021, 13, 583. [Google Scholar] [CrossRef]
- Tomić, M.; Rover, S.; Pejović, B.; Uremović, N. Functional links between rural and urban areas in the territory of the city of Banja Luka and the perspective of their development. Econ. Sustain. Dev. 2020, 4, 49–62. [Google Scholar] [CrossRef]
- Zeweld, W.; Van Huylenbroeck, G.; Tesfay, G.; Speelman, S. Smallholder farmers’ behavioural intentions towards sustainable agricultural practices. J. Environ. Manag. 2017, 187, 71–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zolfani, S.H.; Yazdani, M.; Pamucar, D.; Zarate, P. A VIKOR and TOPSIS focused reanalysis of the MADM methods based on logarithmic normalization. Facta Univ. Ser. Mech. Eng. 2020, 18, 341–355. [Google Scholar]
- Pamučar, D.S.; Savin, L.M. Multiple-criteria model for optimal off-road vehicle selection for passenger transportation: BWM-COPRAS model. Vojnoteh. Glas./Mil. Tech. Cour. 2020, 68, 28–64. [Google Scholar] [CrossRef]
Phase 1. Initial research phase | Defining the goal and subject of research |
Forming a group of experts | |
Defining criteria and alternatives in the form of suppliers | |
Forming a questionnaire based on established criteria and alternatives | |
Completion of the questionnaire by experts | |
Phase 2. Determining the weight of the criteria | Expert assessment of the criteria in relation to the first criterion |
Expert assessment of the criteria in relation to the last criterion | |
Calculation of average values for criteria and sub-criteria | |
Implement the steps of the type-2 fuzzy PIPRECIA method | |
Determining the weights of criteria and sub-criteria | |
Phase 3. Ranking suppliers | Forming an initial decision matrix |
Normalization of the initial decision matrix | |
Complicating the normalized decision matrix | |
Implementation of the other steps of the type-2 fuzzy MABAC method | |
Determining the ranking of suppliers | |
Phase 4 Examining the results and conducting a sensitivity analysis | Comparison of rank order with other type-2 fuzzy methods |
Scenario formation and difficulty | |
Conducting sensitivity analysis | |
Analysis of the obtained results |
Linguistic Values | Membership Functions |
---|---|
Very Poor (VP) | [(1, 1.5); 2; (2, 2.5)] |
Poor (P) | [(1, 2.5); 3; (3.5, 4.5)] |
Medium Poor (MP) | [(2, 3.5); 4; (5, 5.5)] |
Medium (M) | [(3, 4.5); 5; (6, 7.5)] |
Medium Good (MG) | [(4, 5.5); 6; (8, 9)] |
Good (G) | [(5, 6.5); 8; (9.5, 10)] |
Very Good (VG) | [(6, 7.5); 9; (10, 10)] |
Linguistic Scale | IVF Number | ||||||
---|---|---|---|---|---|---|---|
DFV | |||||||
Almost equal value | Scale 1–2 | 1.000 | 1.015 | 1.030 | 1.040 | 1.050 | 1.027 |
Slightly more significant | 1.100 | 1.125 | 1.150 | 1.175 | 1.200 | 1.150 | |
Moderately more significant | 1.200 | 1.250 | 1.300 | 1.325 | 1.350 | 1.285 | |
More significant | 1.300 | 1.375 | 1.450 | 1.475 | 1.500 | 1.420 | |
Much more significant | 1.400 | 1.500 | 1.600 | 1.625 | 1.650 | 1.555 | |
Dominantly more significant | 1.500 | 1.625 | 1.750 | 1.775 | 1.800 | 1.690 | |
Absolutely more significant | 1.600 | 1.750 | 1.900 | 1.925 | 1.950 | 1.825 | |
Weakly less significant | Scale 0–1 | 0.667 | 0.725 | 0.800 | 0.900 | 1.000 | 0.818 |
Moderately less significant | 0.500 | 0.600 | 0.667 | 0.850 | 1.000 | 0.723 | |
Less significant | 0.400 | 0.450 | 0.500 | 0.600 | 0.667 | 0.523 | |
Really less significant | 0.333 | 0.375 | 0.400 | 0.450 | 0.500 | 0.412 | |
Much less significant | 0.286 | 0.315 | 0.333 | 0.375 | 0.400 | 0.342 | |
Dominantly less significant | 0.250 | 0.275 | 0.286 | 0.315 | 0.333 | 0.292 | |
Absolutely less significant | 0.222 | 0.240 | 0.250 | 0.275 | 0.286 | 0.255 |
Id | Criterion | Definition | Sources |
---|---|---|---|
C1 | Ecological criterion | ||
C11 | Recycling and reduction | Material reuse and waste reduction | [5,7,38] |
C12 | Green product | Production of products that are environmentally friendly | [7] |
C13 | Eco product design | Product design in accordance with environmental standards | [7,9,18] |
C14 | Environmental management system | Application of ISO 14001 standards in the organization | [5,7,9,24] |
C15 | Pollution control | Environmental impact reduction standards | [3,5,7,10] |
C16 | Waste management | Waste management system in the organization | [24,28] |
C2 | Social criteria | ||
C21 | Reputation | General opinion on the organization by external participants | [5,7] |
C22 | Sharing information | Presentation of all important information about the organization | [7,8,24] |
C23 | Employee training and development | Investment in employee development by the organization | [5,10] |
C24 | Impact on the local community | The impact that the organization has on the local community | [3,18,38] |
C25 | Safety and health at work | Implementation of measures for the protection of the health and safety of employees | [7,10,15,24,26] |
C26 | Employee rights | Application of standards for respect for workers’ rights | [5,7,15] |
C3 | Economic criterion | ||
C31 | Price | The monetary amount of the value of a product, good, or service | [5,10,28] |
C32 | Quality | The degree to which products meet customer requirements | [7,8,18,26] |
C33 | Delivery on time | Ability to deliver products at a specified time | [3,8,10] |
C34 | Logistics costs | Costs of supply of materials and services by suppliers | [9,28]; |
C35 | Technological capacities | Technological capacity of suppliers and the ability to deliver all products and services | [7,18,24,25] |
C36 | Innovation | Possibility of production of new and improved products and services | [5,9,38]; |
PIPRECIA | C1 | C2 | C3 | ||||||||
DM1 | 1.100 | 1.125 | 1.150 | 1.175 | 1.200 | 1.200 | 1.250 | 1.300 | 1.325 | 1.350 | |
DM2 | 0.500 | 0.600 | 0.667 | 0.850 | 1.000 | 1.000 | 1.015 | 1.030 | 1.040 | 1.050 | |
DM3 | 0.500 | 0.600 | 0.667 | 0.850 | 1.000 | 1.200 | 1.250 | 1.300 | 1.325 | 1.350 | |
GM | 0.650 | 0.740 | 0.800 | 0.947 | 1.063 | 1.129 | 1.166 | 1.203 | 1.222 | 1.242 | |
PIPRECIA | C3 | C2 | C1 | ||||||||
DM1 | 0.500 | 0.600 | 0.667 | 0.850 | 1.000 | 0.400 | 0.450 | 0.500 | 0.600 | 0.667 | |
DM2 | 0.400 | 0.450 | 0.500 | 0.600 | 0.667 | 0.667 | 0.725 | 0.800 | 0.900 | 1.000 | |
DM3 | 0.333 | 0.375 | 0.400 | 0.450 | 0.500 | 0.500 | 0.600 | 0.667 | 0.850 | 1.000 | |
GM | 0.405 | 0.466 | 0.511 | 0.612 | 0.693 | 0.511 | 0.581 | 0.644 | 0.771 | 0.874 |
kj | qj | wj | DF | |||||||||||||
C1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.315 | 0.288 | 0.347 | 0.386 | 0.364 | 0.341 |
C2 | 1.350 | 1.260 | 1.200 | 1.053 | 0.937 | 0.741 | 0.794 | 0.833 | 0.950 | 1.067 | 0.234 | 0.228 | 0.289 | 0.366 | 0.389 | 0.299 |
C3 | 0.871 | 0.834 | 0.797 | 0.778 | 0.758 | 0.851 | 0.952 | 1.045 | 1.221 | 1.407 | 0.268 | 0.274 | 0.363 | 0.471 | 0.512 | 0.375 |
Sum | 2.592 | 2.745 | 2.879 | 3.170 | 3.473 | 0.817 | 0.790 | 1.000 | 1.223 | 1.265 | ||||||
kj | qj | wj | DF | |||||||||||||
C1 | 1.489 | 1.419 | 1.356 | 1.229 | 1.126 | 0.421 | 0.459 | 0.495 | 0.587 | 0.680 | 0.183 | 0.188 | 0.229 | 0.286 | 0.322 | 0.239 |
C2 | 1.595 | 1.534 | 1.489 | 1.388 | 1.307 | 0.627 | 0.652 | 0.672 | 0.721 | 0.765 | 0.272 | 0.267 | 0.310 | 0.352 | 0.363 | 0.312 |
C3 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.433 | 0.409 | 0.462 | 0.488 | 0.474 | 0.455 |
Sum | 2.048 | 2.111 | 2.167 | 2.307 | 2.445 | 0.888 | 0.864 | 1.000 | 1.126 | 1.158 |
Criterion | Weight | Criterion | Weight | Criterion | Weight | Criterion | Weight |
---|---|---|---|---|---|---|---|
C1 | 0.2903 | C11 | 0.2475 | C21 | 0.2550 | C31 | 0.5173 |
C2 | 0.3057 | C12 | 0.1952 | C22 | 0.1893 | C32 | 0.2532 |
C3 | 0.4150 | C13 | 0.1841 | C23 | 0.1667 | C33 | 0.1472 |
C14 | 0.1657 | C24 | 0.1478 | C34 | 0.0971 | ||
C15 | 0.1472 | C25 | 0.1419 | C35 | 0.0798 | ||
C16 | 0.1127 | C26 | 0.1310 | C36 | 0.0666 |
DM1 | C11 | C12 | C13 | C14 | C15 | C16 | C21 | C22 | C23 | C24 | C25 | C26 | C31 | C32 | C33 | C34 | C35 | C36 |
A1 | MG | VP | M | P | G | P | P | M | MP | P | MP | MP | P | MP | M | MP | MP | MP |
A2 | M | M | VP | M | MP | MG | MG | MP | P | M | MG | MG | MG | VG | MG | M | M | P |
A3 | MP | G | MG | MG | M | MP | G | G | G | G | M | M | G | MG | G | MG | G | G |
A4 | VG | MG | G | G | MG | M | VG | VG | MG | VG | G | G | VG | G | VG | G | MG | MG |
A5 | P | MP | P | MP | P | MG | M | VP | VG | MP | VP | P | M | P | VP | VP | P | VP |
A6 | VP | P | MP | VP | VP | VP | MP | P | M | VP | P | VP | MP | VP | MP | P | VP | M |
DM2 | C11 | C12 | C13 | C14 | C15 | C16 | C21 | C22 | C23 | C24 | C25 | C26 | C31 | C32 | C33 | C34 | C35 | C36 |
A1 | M | MG | M | G | MG | M | MG | MP | M | MG | M | MG | MG | MG | M | G | MG | M |
A2 | P | P | MP | MG | G | MG | G | M | MG | G | MG | M | M | M | G | M | M | G |
A3 | MG | M | MG | MP | M | MP | MP | MG | MP | VG | VG | G | VG | G | MG | MG | G | MG |
A4 | VG | VG | VG | VG | VG | G | VG | VG | G | M | G | VG | G | VG | VG | VG | VG | VG |
A5 | MP | G | G | VP | P | VG | VP | P | VG | MP | MP | P | P | MP | P | VP | P | P |
A6 | G | MP | P | P | VP | P | P | VP | P | P | P | MP | VP | P | VP | P | MP | MP |
DM3 | C11 | C12 | C13 | C14 | C15 | C16 | C21 | C22 | C23 | C24 | C25 | C26 | C31 | C32 | C33 | C34 | C35 | C36 |
A1 | G | MG | M | MG | G | VG | MG | MG | MG | G | VG | G | MG | G | MG | MG | MG | MG |
A2 | MG | M | MP | M | MG | M | M | M | M | MP | M | M | MP | MG | G | MP | M | MP |
A3 | VG | G | G | VG | VG | G | VG | G | G | G | G | VG | G | VG | VG | G | G | VG |
A4 | M | MP | MG | G | M | MG | G | VG | VG | VG | MG | MG | VG | MP | M | VG | VG | G |
A5 | MP | P | VP | MP | VP | MP | P | MP | P | P | MP | MP | VP | M | P | VP | P | VP |
A6 | P | VP | P | P | MP | P | MP | VP | MP | M | P | P | MP | P | MP | P | VP | P |
DM1 | C11 | C12 | C13 | C14 | |
A1 | 4, 5.5, 6, 8, 9 | 1, 1.5, 2, 2, 2.5 | 3, 4.5, 5, 6, 7.5 | 1, 2.5, 3, 3.5, 4.5 | … |
A2 | 3, 4.5, 5, 6, 7.5 | 3, 4.5, 5, 6, 7.5 | 1, 1.5, 2, 2, 2.5 | 3, 4.5, 5, 6, 7.5 | … |
A3 | 2, 3.5, 4, 5, 5.5 | 5, 6.5, 8, 9.5, 10 | 4, 5.5, 6, 8, 9 | 4, 5.5, 6, 8, 9 | … |
A4 | 6, 7.5, 9, 10, 10 | 4, 5.5, 6, 8, 9 | 5, 6.5, 8, 9.5, 10 | 5, 6.5, 8, 9.5, 10 | … |
A5 | 1, 2.5, 3, 3.5, 4.5 | 2, 3.5, 4, 5, 5.5 | 1, 2.5, 3, 3.5, 4.5 | 2, 3.5, 4, 5, 5.5 | … |
A6 | 1, 1.5, 2, 2, 2.5 | 1, 2.5, 3, 3.5, 4.5 | 2, 3.5, 4, 5, 5.5 | 1, 1.5, 2, 2, 2.5 | … |
DM2 | C11 | C12 | C13 | C14 | … |
A1 | 3, 4.5, 5, 6, 7.5 | 4, 5.5, 6, 8, 9 | 3, 4.5, 5, 6, 7.5 | 5, 6.5, 8, 9.5, 10 | … |
A2 | 1, 2.5, 3, 3.5, 4.5 | 1, 2.5, 3, 3.5, 4.5 | 2, 3.5, 4, 5, 5.5 | 4, 5.5, 6, 8, 9 | … |
A3 | 4, 5.5, 6, 8, 9 | 3, 4.5, 5, 6, 7.5 | 4, 5.5, 6, 8, 9 | 2, 3.5, 4, 5, 5.5 | … |
A4 | 6, 7.5, 9, 10, 10 | 6, 7.5, 9, 10, 10 | 6, 7.5, 9, 10, 10 | 6, 7.5, 9, 10, 10 | … |
A5 | 2, 3.5, 4, 5, 5.5 | 5, 6.5, 8, 9.5, 10 | 5, 6.5, 8, 9.5, 10 | 1, 1.5, 2, 2, 2.5 | … |
A6 | 5, 6.5, 8, 9.5, 10 | 2, 3.5, 4, 5, 5.5 | 1, 2.5, 3, 3.5, 4.5 | 1, 2.5, 3, 3.5, 4.5 | … |
DM3 | C11 | C12 | C13 | C14 | … |
A1 | 5, 6.5, 8, 9.5, 10 | 4, 5.5, 6, 8, 9 | 3, 4.5, 5, 6, 7.5 | 4, 5.5, 6, 8, 9 | … |
A2 | 4, 5.5, 6, 8, 9 | 3, 4.5, 5, 6, 7.5 | 2, 3.5, 4, 5, 5.5 | 3, 4.5, 5, 6, 7.5 | … |
A3 | 6, 7.5, 9, 10, 10 | 5, 6.5, 8, 9.5, 10 | 5, 6.5, 8, 9.5, 10 | 6, 7.5, 9, 10, 10 | … |
A4 | 3, 4.5, 5, 6, 7.5 | 2, 3.5, 4, 5, 5.5 | 4, 5.5, 6, 8, 9 | 5, 6.5, 8, 9.5, 10 | … |
A5 | 2, 3.5, 4, 5, 5.5 | 1, 2.5, 3, 3.5, 4.5 | 1, 1.5, 2, 2, 2.5 | 2, 3.5, 4, 5,5.5 | … |
A6 | 1, 2.5, 3, 3.5, 4.5 | 1, 1.5, 2, 2, 2.5 | 1, 2.5, 3, 3.5, 4.5 | 1, 2.5, 3, 3.5, 4.5 | … |
GM | C11 | C12 | C13 | C14 | … |
A1 | 3.9, 5.4, 6.2, 7.7, 8.8 | 2.5, 3.6, 4.2, 5, 5.9 | 3, 4.5, 5, 6, 7.5 | 2.7, 4.5, 5.2, 6.4, 7.4 | … |
A2 | 2.3, 4, 4.5, 5.5, 6.7 | 2.1, 3.7, 4.2, 5, 6.3 | 1.6, 2.6, 3.2, 3.7, 4.2 | 3.3, 4.8, 5.3, 6.6, 8 | … |
A3 | 3.6, 5.2, 6, 7.4, 7.9 | 4.2, 5.8, 6.8, 8.2, 9.1 | 4.3, 5.8, 6.6, 8.5, 9.3 | 3.6, 5.2, 6, 7.4, 7.9 | … |
A4 | 4.8, 6.3, 7.4, 8.4, 9.1 | 3.6, 5.2, 6, 7.4, 7.9 | 4.9, 6.4, 7.6, 9.1, 9.7 | 5.3, 6.8, 8.3, 9.7, 10 | … |
A5 | 1.6, 3.1, 3.6, 4.4, 5.1 | 2.2, 3.8, 4.6, 5.5, 6.3 | 1.7, 2.9, 3.6, 4.1, 4.8 | 1.6, 2.6, 3.2, 3.7, 4.2 | … |
A6 | 1.7, 2.9, 3.6, 4.1, 4.8 | 1.3, 2.4, 2.9, 3.3, 4 | 1.3, 2.8, 3.3, 3.9, 4.8 | 1, 2.1, 2.6, 2.9, 3.7 | … |
max | 4.8, 6.3, 7.4, 8.4, 9.1 | 4.2, 5.8, 6.8, 8.2, 9.1 | 4.9, 6.4, 7.6, 9.1, 9.7 | 5.3, 6.8, 8.3, 9.7, 10 |
Normalized decision matrix | ||||
C11 | C12 | C13 | C14 | |
A1 | 0.43, 0.60, 0.68, 0.85, 0.97 | 0.28, 0.39, 0.46, 0.55, 0.65 | 0.31, 0.47, 0.52, 0.62, 0.78 | 0.27, 0.45, 0.52, 0.64, 0.74 |
A2 | 0.25, 0.44, 0.49, 0.61, 0.74 | 0.23, 0.41, 0.46, 0.55, 0.70 | 0.16, 0.27, 0.33, 0.38, 0.44 | 0.33, 0.48, 0.53, 0.66, 0.80 |
A3 | 0.40, 0.58, 0.66, 0.81, 0.87 | 0.46, 0.63, 0.75, 0.90, 1.00 | 0.45, 0.60, 0.68, 0.88, 0.97 | 0.36, 0.52, 0.60, 0.74, 0.79 |
A4 | 0.52, 0.70, 0.81, 0.93, 1.00 | 0.40, 0.58, 0.66, 0.81, 0.87 | 0.51, 0.67, 0.78, 0.95, 1.00 | 0.53, 0.68, 0.83, 0.97, 1.00 |
A5 | 0.17, 0.34, 0.40, 0.49, 0.57 | 0.24, 0.42, 0.50, 0.61, 0.69 | 0.18, 0.30, 0.38, 0.42, 0.50 | 0.16, 0.26, 0.32, 0.37, 0.42 |
A6 | 0.19, 0.32, 0.40, 0.45, 0.53 | 0.14, 0.26, 0.32, 0.36, 0.44 | 0.13, 0.29, 0.34, 0.41, 0.50 | 0.10, 0.21, 0.26, 0.29, 0.37 |
w | 0.07, 0.07, 0.07, 0.07, 0.07 | 0.06, 0.06, 0.06, 0.06, 0.06 | 0.05, 0.05, 0.05, 0.05, 0.05 | 0.05, 0.05, 0.05, 0.05, 0.05 |
Weighted decision-making matrix | ||||
C11 | C12 | C13 | C14 | |
A1 | 0.10, 0.11, 0.12, 0.13, 0.14 | 0.07, 0.08, 0.08, 0.09, 0.09 | 0.07, 0.08, 0.08, 0.09, 0.09 | 0.06, 0.07, 0.07, 0.08, 0.08 |
A2 | 0.09, 0.10, 0.11, 0.12, 0.13 | 0.07, 0.08, 0.08, 0.09, 0.10 | 0.06, 0.07, 0.07, 0.07, 0.08 | 0.06, 0.07, 0.07, 0.08, 0.09 |
A3 | 0.10, 0.11, 0.12, 0.13, 0.13 | 0.08, 0.09, 0.10, 0.11, 0.11 | 0.08, 0.09, 0.09, 0.10, 0.11 | 0.07, 0.07, 0.08, 0.08, 0.09 |
A4 | 0.11, 0.12, 0.13, 0.14, 0.14 | 0.08, 0.09, 0.09, 0.10, 0.11 | 0.08, 0.09, 0.10, 0.10, 0.11 | 0.07, 0.08, 0.09, 0.09, 0.10 |
A5 | 0.08, 0.10, 0.10, 0.11, 0.11 | 0.07, 0.08, 0.09, 0.09, 0.10 | 0.06, 0.07, 0.07, 0.08, 0.08 | 0.06, 0.06, 0.06, 0.07, 0.07 |
A6 | 0.09, 0.09, 0.10, 0.10, 0.11 | 0.06, 0.07, 0.07, 0.08, 0.08 | 0.06, 0.07, 0.07, 0.08, 0.08 | 0.05, 0.06, 0.06, 0.06, 0.07 |
GAO | 0.09, 0.11, 0.11, 0.12, 0.13 | 0.07, 0.08, 0.09, 0.09, 0.10 | 0.07, 0.08, 0.08, 0.09, 0.09 | 0.06, 0.07, 0.07, 0.08, 0.08 |
Elements of alternatives distance from the border approximate area | ||||
C11 | C12 | C13 | C14 | |
A1 | −0.02, −0.01, 0.01, 0.04, 0.03 | −0.02, −0.02, 0.00, 0.02, 0.01 | −0.02, −0.01, 0.00, 0.02, 0.02 | −0.02, −0.01, 0.00, 0.02, 0.02 |
A2 | −0.03, −0.02, −0.01, 0.02, 0.02 | −0.02, −0.02, 0.00, 0.02, 0.01 | −0.02, −0.02, −0.01, 0.01, 0.00 | −0.01, −0.01, 0.00, 0.02, 0.02 |
A3 | −0.02, −0.01, 0.01, 0.04, 0.03 | −0.01, 0.00, 0.01, 0.03, 0.03 | −0.01, 0.00, 0.01, 0.03, 0.03 | −0.01, −0.01, 0.00, 0.02, 0.02 |
A4 | −0.01, −0.01, 0.02, 0.04, 0.04 | −0.01, −0.01, 0.01, 0.03, 0.02 | 0.00, 0.00, 0.02, 0.04, 0.03 | 0.00, 0.00, 0.02, 0.03, 0.03 |
A5 | −0.04, −0.03, −0.01, 0.01, 0.01 | −0.02, −0.02, 0.00, 0.02, 0.01 | −0.02, −0.02, −0.01, 0.01, 0.00 | −0.02, −0.02, −0.01, 0.00, 0.00 |
A6 | −0.04, −0.03, −0.01, 0.01, 0.00 | −0.03, −0.03, −0.01, 0.00, 0.00 | −0.02, −0.02, −0.01, 0.01, 0.00 | −0.02, −0.02, −0.01, 0.00, 0.00 |
Alternative | Qi | Rank | |||||
---|---|---|---|---|---|---|---|
A1 | −0.358 | −0.266 | 0.007 | 0.403 | 0.350 | −0.1087 | 3 |
A2 | −0.353 | −0.266 | 0.003 | 0.390 | 0.345 | −0.1128 | 4 |
A3 | −0.192 | −0.105 | 0.221 | 0.629 | 0.532 | 0.1651 | 2 |
A4 | −0.140 | −0.053 | 0.283 | 0.676 | 0.562 | 0.2420 | 1 |
A5 | −0.518 | −0.460 | −0.195 | 0.116 | 0.042 | −0.4317 | 5 |
A6 | −0.547 | −0.502 | −0.241 | 0.059 | −0.022 | −0.5001 | 6 |
Scenarios | C11 | C12 | C13 | C14 | C15 | C16 | C21 | C22 | C23 | C24 | C25 | C26 | C31 | C32 | C33 | C34 | C35 | C36 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Scenario 1 | 0.32 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
Scenario 2 | 0.04 | 0.32 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
Scenario 3 | 0.04 | 0.04 | 0.32 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
Scenario 18 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.32 |
Scenario 19 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puška, A.; Nedeljković, M.; Hashemkhani Zolfani, S.; Pamučar, D. Application of Interval Fuzzy Logic in Selecting a Sustainable Supplier on the Example of Agricultural Production. Symmetry 2021, 13, 774. https://doi.org/10.3390/sym13050774
Puška A, Nedeljković M, Hashemkhani Zolfani S, Pamučar D. Application of Interval Fuzzy Logic in Selecting a Sustainable Supplier on the Example of Agricultural Production. Symmetry. 2021; 13(5):774. https://doi.org/10.3390/sym13050774
Chicago/Turabian StylePuška, Adis, Miroslav Nedeljković, Sarfaraz Hashemkhani Zolfani, and Dragan Pamučar. 2021. "Application of Interval Fuzzy Logic in Selecting a Sustainable Supplier on the Example of Agricultural Production" Symmetry 13, no. 5: 774. https://doi.org/10.3390/sym13050774
APA StylePuška, A., Nedeljković, M., Hashemkhani Zolfani, S., & Pamučar, D. (2021). Application of Interval Fuzzy Logic in Selecting a Sustainable Supplier on the Example of Agricultural Production. Symmetry, 13(5), 774. https://doi.org/10.3390/sym13050774