Estimation and Prediction for Gompertz Distribution under General Progressive Censoring
Abstract
:1. Introduction
2. Maximum Likelihood Estimation
2.1. Point Estimation with EM Algrithm
- E-step
- M-step
2.2. Asymptotic Confidence Interval
2.3. Bootstrap Confidence Interval
- (1)
- Calculate the MLEs and based on the existing general progressive censored data and censoring scheme .
- (2)
- Generate from Beta().
- (3)
- Generate independent from Uniform, .
- (4)
- Set , where , .
- (5)
- Set , .
- (6)
- Set , , and represents the CDF of Gompertz distribution with parameters and . Then the are the general progressive censored sample (also bootstrap sample).
- (7)
- Compute the MLEs and using the updated bootstrap sample.
- (8)
- Repeat steps (2)–(7) D times. Acquire the estimates: (), ().
- (9)
- Set as the CDF for . For a given value of x, define . The bootstrap-p CI of the parameter is obtained as
- (1)–(7)
- The same as the bootstrap-p above.
- (8)
- Obtain the statistics that
- (9)
- Repeat steps (2)–(8) D times.
- (10)
- Set as the CDF for . For a given value of x, define . The bootstrap-t CI for the parameter is given by
3. Bayesian Estimation
3.1. Loss Functions
3.2. TK Method
3.3. MH Algorithm
- (1)
- Begin with an initial value , set .
- (2)
- Generate a proposal from the bivariate normal distribution where , and denotes the variance-covariance matrix which tends to be considered as the inverse for Fisher information matrix.
- (3)
- Calculate the acceptance probability , and is corresponding joint posterior distribution.
- (4)
- Generate from Uniform.
- (5)
- If , let ; else, let .
- (6)
- Set .
- (7)
- Repeat steps (2–6) D times to get required size of sample.
4. Bayesian Prediction
5. Simulation and Data Analysis
5.1. Simulation Study
- (1)
- Generate from Beta().
- (2)
- Generate independent from Uniform, .
- (3)
- Set , where , .
- (4)
- Set , .
- (5)
- Set , , and represents the CDF of Gompertz distribution.
5.2. Data Analysis
- (1)
- The PDF of GE distribution:
- (2)
- The PDF of Inverse Weibull distribution:
- (3)
- The PDF of Exponential distribution:
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gompertz, B. On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies. Philos. Trans. R. Soc. Lond. 1825, 115, 513–585. [Google Scholar]
- Willekens, F. Gompertz in context: The Gompertz and related distributions. In Forecasting Mortality in Developed Countries: Insights from a Statistical, Demographic and Epidemiological Perspective; Springer: Berlin/Heidelberg, Germany, 2001; Volume 9, pp. 105–126. [Google Scholar]
- Wu, J.-W.; Hung, W.-L.; Tsai, C.-H. Estimation of parameters of the Gompertz distribution using the least squares method. Appl. Math. Comput. 2004, 158, 133–147. [Google Scholar] [CrossRef]
- Chang, S.; Tsai, T. Point and interval estimations for the Gompertz distribution under progressive Type-II censoring. Metron 2003, 61, 403–418. [Google Scholar]
- Mohie El-Din, M.M.; Nagy, M.; Abu-Moussa, M.H. Estimation and prediction for Gompertz distribution under the generalized progressive hybrid censored data. Ann. Data Sci. 2019, 6, 673–705. [Google Scholar] [CrossRef]
- Soliman, A.A.; Abd-Ellah, A.H.; Abou-Elheggag, N.A. Abd-Elmougod, G.A. Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data. Comput. Stat. Data Anal. 2012, 56, 2471–2485. [Google Scholar] [CrossRef]
- Bakouch, H.S.; El-Bar, A. A new weighted Gompertz distribution with applications to reliability data. Appl. Math. 2017, 62, 269–296. [Google Scholar] [CrossRef]
- Ghitany, M.; Alqallaf, F.; Balakrishnan, N. On the likelihood estimation of the parameters of Gompertz distribution based on complete and progressively Type-II censored samples. J. Stat. Comput. Simul. 2014, 84, 1803–1812. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Sandhu, R. Best linear unbiased and maximum likelihood estimation for exponential distributions under general progressive Type-II censored samples. Sankhyā Indian J. Stat. Ser. 1996, 58, 1–9. [Google Scholar]
- Fernandez, A.J. On estimating exponential parameters with general Type-II progressive censoring. J. Stat. Plan. Inference 2004, 121, 135–147. [Google Scholar] [CrossRef]
- Peng, X.Y.; Yan, Z.Z. Bayesian estimation and prediction for the Inverse Weibull distribution under general progressive censoring. Commun. Stat. Theory Methods 2016, 45, 621–635. [Google Scholar]
- Soliman, A.A.; Al-Hossain, A.Y.; Al-Harbi, M.M. Predicting observables from Weibull model based on general progressive censored data with asymmetric loss. Stat. Methodol. 2011, 8, 451–461. [Google Scholar] [CrossRef]
- Kim, C.; Han, K. Estimation of the scale parameter of the Rayleigh distribution under general progressive censoring. J. Korean Stat. Soc. 2009, 38, 239–246. [Google Scholar] [CrossRef]
- Soliman, A.A. Estimations for Pareto model using general progressive censored data and asymmetric loss. Commun. Stat. Theory Methods 2008, 37, 1353–1370. [Google Scholar] [CrossRef]
- Wang, B.X. Exact interval estimation for the scale family under general progressive Type-II censoring. Commun. Stat. Theory Methods 2012, 41, 4444–4452. [Google Scholar] [CrossRef]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. (Methodol.) 1977, 39, 1–38. [Google Scholar]
- Louis, T.A. Finding the observed information matrix when using the EM algorithm. J. R. Stat. Soc. Ser. (Methodol.) 1982, 44, 226–233. [Google Scholar]
- Wang, J.; Wang, X.R. The EM algorithm for the estimation of parameters under the general Type-II progressive censoring data. J. Anhui Norm. Univ. (Nat. Sci.) 2014, 37, 524–529. [Google Scholar]
- Efron, B.; Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1986, 1, 54–75. [Google Scholar] [CrossRef]
- Kayal, T.; Tripathi, Y.M.; Singh, D.P.; Rastogi, M.K. Estimation and prediction for Chen distribution with bathtub shape under progressive censoring. J. Stat. Comput. Simul. 2017, 87, 348–366. [Google Scholar] [CrossRef]
- Kundu, D.; Kannan, N.; Balakrishnan, N. Analysis of progressively censored competing risks data. Advances in Survival Analysis. In Handbook of Statistics; Elsevier: New York, NY, USA, 2004; Volume 23, pp. 331–348. [Google Scholar]
- Aggarwala, R.; Balakrishnan, N. Some properties of progressivecensored order statistics from arbitrary and uniform distributions with applications to inference and simulation. J. Stat. Plan. Inference 1998, 70, 35–49. [Google Scholar] [CrossRef]
- Tierney, L.; Kadane, J.B. Accurate approximations for posterior moments and marginal densities. J. Am. Stat. Assoc. 1986, 81, 82–86. [Google Scholar] [CrossRef]
- Jozani, M.J.; March, É.; Parsian, A. Bayesian and robust Bayesian analysis under a general class of balanced loss functions. Stat. Pap. 2012, 53, 51–60. [Google Scholar] [CrossRef]
- Bai, X.; Shi, Y.; Liu, Y.; Liu, B. Reliability estimation of stress–strength model using finite mixture distributions under progressively interval censoring. J. Comput. Appl. Math. 2019, 348, 509–524. [Google Scholar] [CrossRef]
- Nichols, M.D.; Padgett, W. A bootstrap control chart for Weibull percentiles. Qual. Reliab. Eng. Int. 2006, 22, 141–151. [Google Scholar] [CrossRef]
- Hand, D.J.; Daly, F.; McConway, K.; Lunn, D.; Ostrowski, E. A Handbook of Small Data Sets; Chapman & Hall: London, UK, 1994. [Google Scholar]
- Chen, Z. Parameter estimation of the Gompertz population. Biom. J. 1997, 39, 117–124. [Google Scholar] [CrossRef]
TK | MH | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BSEL | LINEX | BSEL | LINEX | |||||||||
CS | MLE | SEL | SEL | |||||||||
20(0,11) | 0.3658 | 0.3108 | 0.3273 | 0.3493 | 0.3589 | 0.2613 | 0.3130 | 0.3288 | 0.3500 | 0.3294 | 0.2894 | |
(0.3800) | (0.004819) | (0.04809) | (0.1982) | (0.03838) | (0.009074) | (0.0078843) | (0.003863) | (0.0007096) | (0.008166) | (0.005391) | ||
1.581 | 1.180 | 1.461 | 1.443 | 1.329 | 1.048 | 1.180 | 1.300 | 1.461 | 1.353 | 1.104 | ||
(0.5589) | (0.03178) | (0.1174) | (0.3282) | (0.07918) | (0.02627) | (0.03099) | (0.01518) | (0.002789) | (0.002789) | (0.002788) | ||
20(2,11) | 0.3642 | 0.3188 | 0.3324 | 0.3505 | 0.4262 | 0.2172 | 0.3236 | 0.3358 | 0.3520 | 0.3328 | 0.2864 | |
(0.2977) | (0.004574) | (0.03937) | (0.1566) | (0.0388) | (0.007151) | (0.005837) | (0.002860) | (0.0005253) | (0.006824) | (0.005360) | ||
1.602 | 1.170 | 1.300 | 1.472 | 1.412 | 0.9907 | 1.157 | 1.291 | 1.469 | 1.372 | 1.067 | ||
(0.6573) | (0.02902) | (0.1272) | (0.3785) | (0.07533) | (0.02982) | (0.03075) | (0.01507) | (0.002768) | (0.002768) | (0.002768) | ||
30(2,15) | 0.3541 | 0.3231 | 0.3324 | 0.3448 | 0.3455 | 0.2880 | 0.3212 | 0.3311 | 0.3442 | 0.3414 | 0.3013 | |
(0.2357) | (0.005198) | (0.03374) | (0.1259) | (0.03671) | (0.005695) | (0.007422) | (0.003637) | (0.0006680) | (0.007797) | (0.004011) | ||
1.479 | 1.193 | 1.279 | 1.393 | 1.330 | 1.080 | 1.186 | 1.274 | 1.391 | 1.311 | 1.104 | ||
(0.3951) | (0.03355) | (0.09828) | (0.2429) | (0.05929) | (0.03756) | (0.03513) | (0.01721) | (0.003161) | (0.003161) | (0.003161) | ||
30(5,15) | 0.3375 | 0.3189 | 0.3245 | 0.3319 | 0.3846 | 0.2314 | 0.3124 | 0.3199 | 0.3300 | 0.3315 | 0.2863 | |
(0.1270) | (0.006982) | (0.02480) | (0.07280) | (0.04221) | (0.005941) | (0.007436) | (0.003644) | (0.0006692) | (0.009107) | (0.006218) | ||
1.408 | 1.225 | 1.280 | 1.353 | 1.387 | 1.089 | 1.216 | 1.274 | 1.351 | 1.316 | 1.175 | ||
(0.2745) | (0.04216) | (0.08951) | (0.1825) | (0.05769) | (0.06132) | (0.03791) | (0.01858) | (0.003412) | (0.003412) | (0.003412) | ||
40(3,20) | 0.3260 | 0.3225 | 0.3236 | 0.3250 | 0.2999 | 0.3370 | 0.3210 | 0.3225 | 0.3245 | 0.3263 | 0.3030 | |
(0.08369) | (0.007040) | (0.01979) | (0.05045) | (0.03917) | (0.004908) | (0.007466) | (0.003658) | (0.0006720) | (0.01124) | (0.008610) | ||
1.382 | 1.208 | 1.260 | 1.330 | 1.265 | 1.161 | 1.206 | 1.259 | 1.329 | 1.319 | 1.147 | ||
(0.2233) | (0.03806) | (0.07655) | (0.1507) | (0.05024) | (0.05376) | (0.03845) | (0.01884) | (0.003460) | (0.003460) | (0.003460) | ||
40(5,20) | 0.3270 | 0.3239 | 0.3248 | 0.3261 | 0.3360 | 0.2854 | 0.3140 | 0.3180 | 0.3231 | 0.3268 | 0.2942 | |
(0.07880) | (0.007134) | (0.01915) | (0.04781) | (0.04173) | (0.004668) | (0.009779) | (0.004792) | (0.0008801) | (0.007355) | (0.007396) | ||
1.350 | 1.211 | 1.253 | 1.308 | 1.305 | 1.135 | 1.233 | 1.268 | 1.315 | 1.292 | 1.169 | ||
(0.1814) | (0.03611) | (0.06730) | (0.1254) | (0.04621) | (0.06150) | (0.04281) | (0.02098) | (0.003853) | (0.004146) | (0.004146) | ||
40(0,25) | 0.3153 | 0.3096 | 0.3113 | 0.3136 | 0.4376 | 0.1756 | 0.3026 | 0.3064 | 0.3115 | 0.3075 | 0.3023 | |
(0.05276) | (0.007417) | (0.01595) | (0.03409) | (0.05085) | (0.004505) | (0.007637) | (0.003742) | (0.0006873) | (0.007945) | (0.006896) | ||
1.341 | 1.238 | 1.269 | 1.310 | 1.415 | 1.045 | 1.240 | 1.271 | 1.311 | 1.326 | 1.153 | ||
(0.1537) | (0.03891) | (0.06481) | (0.1107) | (0.03442) | (0.06736) | (0.04114) | (0.02016) | (0.003702) | (0.003702) | (0.003702) | ||
40(3,25) | 0.3202 | 0.3189 | 0.3192 | 0.3198 | 0.2732 | 0.3418 | 0.3010 | 0.3067 | 0.3144 | 0.3339 | 0.3050 | |
(0.03832) | (0.007207) | (0.01349) | (0.02594) | (0.04694) | (0.003930) | (0.008018) | (0.003929) | (0.0007216) | (0.01114) | (0.006569) | ||
1.299 | 1.216 | 1.241 | 1.274 | 1.244 | 1.216 | 1.215 | 1.240 | 1.274 | 1.306 | 1.159 | ||
(0.1220) | (0.03458) | (0.05478) | (0.08973) | (0.03643) | (0.06051) | (0.03461) | (0.01696) | (0.003115) | (0.003115) | (0.003115) | ||
50(2,30) | 0.3130 | 0.3123 | 0.3125 | 0.3128 | 0.3868 | 0.2266 | 0.3166 | 0.3155 | 0.3141 | 0.3200 | 0.3026 | |
(0.04112) | (0.008172) | (0.01486) | (0.02804) | (0.04575) | (0.003879) | (0.01427) | (0.006994) | (0.001285) | (0.01180) | (0.01074) | ||
1.310 | 1.234 | 1.257 | 1.287 | 1.364 | 1.104 | 1.223 | 1.249 | 1.284 | 1.299 | 1.182 | ||
(0.1154) | (0.03679) | (0.05546) | (0.08691) | (0.02824) | (0.07838) | (0.05966) | (0.02923) | (0.005369) | (0.005369) | (0.005369) | ||
50(5,30) | 0.3079 | 0.3129 | 0.3114 | 0.3094 | 0.3298 | 0.3012 | 0.3120 | 0.3108 | 0.3091 | 0.3127 | 0.2990 | |
(0.03577) | (0.007717) | (0.01351) | (0.02473) | (0.04378) | (0.002980) | (0.006585) | (0.003226) | (0.0005926) | (0.008346) | (0.007515) | ||
1.313 | 1.238 | 1.261 | 1.291 | 1.280 | 1.173 | 1.219 | 1.247 | 1.285 | 1.311 | 1.194 | ||
(0.1103) | (0.03658) | (0.05427) | (0.08375) | (0.02626) | (0.06414) | (0.03330) | (0.01631) | (0.002997) | (0.002997) | (0.002997) |
Asymptotic | Bootstrap-p | Bootstrap-t | HPD | ||||||
---|---|---|---|---|---|---|---|---|---|
CS | ALs | CPs | ALs | CPs | ALs | CPs | ALs | CPs | |
2.060 | 0.77 | 1.570 | 0.85 | 1.551 | 0.84 | 0.4837 | 0.83 | ||
2.458 | 0.94 | 2.839 | 0.79 | 2.911 | 0.80 | 1.388 | 0.78 | ||
3.153 | 0.73 | 2.202 | 0.88 | 1.641 | 0.84 | 0.4582 | 0.87 | ||
2.907 | 0.95 | 3.189 | 0.82 | 2.903 | 0.85 | 1.186 | 0.81 | ||
30(2,15) | 3.391 | 0.78 | 1.691 | 0.83 | 1.979 | 0.82 | 0.6035 | 0.87 | |
2.346 | 0.94 | 2.552 | 0.87 | 2.664 | 0.84 | 1.139 | 0.84 | ||
30(5,15) | 1.006 | 0.83 | 0.9996 | 0.84 | 0.9396 | 0.80 | 0.4921 | 0.84 | |
1.753 | 0.95 | 1.944 | 0.81 | 1.885 | 0.86 | 0.8988 | 0.86 | ||
40(3,20) | 1.001 | 0.83 | 0.9348 | 0.84 | 0.8464 | 0.85 | 0.6066 | 0.85 | |
1.755 | 0.95 | 1.874 | 0.81 | 1.740 | 0.83 | 0.5879 | 0.84 | ||
40(5,20) | 0.8690 | 0.83 | 0.8693 | 0.84 | 0.9051 | 0.88 | 0.4502 | 0.86 | |
1.596 | 0.95 | 1.735 | 0.86 | 1.770 | 0.84 | 0.9282 | 0.83 | ||
40(0,25) | 0.9111 | 0.85 | 0.8762 | 0.87 | 0.9412 | 0.83 | 0.2881 | 0.74 | |
1.450 | 0.93 | 1.520 | 0.82 | 1.488 | 0.85 | 0.8589 | 0.91 | ||
40(3,25) | 0.7631 | 0.84 | 0.7806 | 0.79 | 0.8429 | 0.85 | 0.3531 | 0.93 | |
1.354 | 0.93 | 1.431 | 0.85 | 1.465 | 0.80 | 0.8237 | 0.92 | ||
50(2,30) | 0.7248 | 0.86 | 0.7310 | 0.88 | 0.5984 | 0.82 | 0.4184 | 0.99 | |
1.257 | 0.95 | 1.315 | 0.87 | 1.283 | 0.84 | 0.6921 | 0.96 | ||
50(5,30) | 0.6995 | 0.85 | 0.7021 | 0.85 | 0.7254 | 0.84 | 0.4984 | 0.83 | |
1.227 | 0.94 | 1.285 | 0.83 | 1.308 | 0.88 | 0.8684 | 0.87 |
CS | v | Point Prediction | Interval Prediction | |
---|---|---|---|---|
20(0,11) | 3 | 0.6797 | (7.802 × , 1.991) | |
7 | 1.437 | (0.6615, 3.181) | ||
10 | 2.407 | (1.954, 4.649) | ||
20(2,11) | 3 | 0.7784 | (6.630 × , 2.222) | |
7 | 1.665 | (1.007, 3.402) | ||
10 | 2.717 | (2.345, 4.952) | ||
30(2,15) | 3 | 0.6801 | (4.705 × , 2.063) | |
7 | 1.474 | (0.8233, 3.029) | ||
10 | 2.349 | (2.157, 4.415) | ||
30(5,15) | 3 | 0.6176 | (6.116 × , 1.881) | |
7 | 1.325 | (0.9165, 2.787) | ||
10 | 2.155 | (2.011, 3.876) | ||
40(3,20) | 3 | 0.6123 | (4.757 × , 1.925) | |
7 | 1.369 | (0.8673, 2.851) | ||
10 | 2.094 | (2.035, 3.937) | ||
40(5,20) | 3 | 0.7092 | (4.432 × , 2.074) | |
7 | 1.445 | (1.059, 2.968) | ||
10 | 2.263 | (2.221, 4.123) | ||
40(0,25) | 3 | 0.6147 | (5.143 × , 1.905) | |
7 | 1.318 | (0.8493, 2.812) | ||
10 | 2.089 | (2.032, 3.951) | ||
40(3,25) | 3 | 0.6341 | (5.932 × , 1.986) | |
7 | 1.320 | (1.021, 2.838) | ||
10 | 2.096 | (2.106, 3.902) | ||
50(2,30) | 3 | 0.6090 | (7.831 × , 1.914) | |
7 | 1.325 | (1.033, 2.783) | ||
10 | 2.025 | (2.092, 3.867) | ||
50(5,30) | 3 | 0.5322 | (4.538 × , 1.859) | |
7 | 1.210 | (1.021, 2.651) | ||
10 | 1.918 | (2.025, 3.665) |
Distribution | K-S | AIC | BIC | ||
---|---|---|---|---|---|
Gompertz | 0.0348201 | 1.07068 | 0.11122 | 180.177 | 184.556 |
GE | 9.19911 | 1.00755 | 0.15472 | 194.745 | 199.124 |
Inverse weibull | 1.64805 | 3.22624 | 0.23042 | 246.390 | 250.769 |
Exponential | 0.362379 | 0.28615 | 267.989 | 270.178 |
BSEL | LINEX | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CS | MLE | SEL | ||||||||
1 | 0.01946 | 0.02609 | 0.02476 | 0.02344 | 0.02211 | 0.02079 | 0.02346 | 0.02923 | 0.006137 | 0.008611 |
1.227 | 1.199 | 1.205 | 1.210 | 1.216 | 1.221 | 1.290 | 1.142 | 1.734 | 1.671 | |
2 | 0.03102 | 0.03786 | 0.03649 | 0.03512 | 0.03376 | 0.03239 | 0.03635 | 0.04326 | 0.01559 | 0.01855 |
1.091 | 1.072 | 1.076 | 1.079 | 1.083 | 1.087 | 1.126 | 1.035 | 1.397 | 1.358 | |
3 | 0.02936 | 0.03555 | 0.03431 | 0.03307 | 0.03183 | 0.03060 | 0.03419 | 0.04052 | 0.01519 | 0.01790 |
1.091 | 1.074 | 1.077 | 1.081 | 1.084 | 1.088 | 1.123 | 1.039 | 1.377 | 1.340 |
BSEL | LINEX | ||||||||
---|---|---|---|---|---|---|---|---|---|
CS | SEL | ||||||||
1 | 0.03833 | 0.03456 | 0.03078 | 0.02701 | 0.02323 | 0.02529 | 0.02813 | 0.02342 | 0.02547 |
1.061 | 1.095 | 1.128 | 1.161 | 1.194 | 1.264 | 1.228 | 1.145 | 1.090 | |
2 | 0.04482 | 0.04206 | 0.03930 | 0.03654 | 0.03378 | 0.03903 | 0.03765 | 0.03707 | 0.03750 |
1.013 | 1.029 | 1.044 | 1.060 | 1.075 | 1.115 | 1.095 | 1.020 | 0.9947 | |
3 | 0.05173 | 0.04725 | 0.04278 | 0.03831 | 0.03383 | 0.03625 | 0.03591 | 0.03631 | 0.03775 |
0.9878 | 1.008 | 1.029 | 1.050 | 1.071 | 1.114 | 1.101 | 1.022 | 0.9948 |
CS | Asymptotic | Bootstrap-p | Bootstrap-t | HPD |
---|---|---|---|---|
1 | (0.001019, 0.03790) | (0.004187, 0.04863) | (0.004368, 0.04738) | (0.01946, 0.06289) |
(0.9007, 1.554) | (0.9560, 1.740) | (0.9548, 1.743) | (0.7067, 1.227) | |
2 | (0.004108, 0.05794) | (0.009230, 0.06913) | (0.01021, 0.07103) | (0.02092, 0.09859) |
(0.8435, 1.338) | (0.8692, 1.464) | (0.8682, 1.439) | (0.7160, 1.197) | |
3 | (0.004407, 0.05431) | (0.009369, 0.06255) | (0.009445, 0.06360) | (0.01217, 0.04114) |
(0.8534, 1.329) | (0.8871, 1.436) | (0.8900, 1.434) | (0.9851, 1.321) |
CS | v | Point Prediction | Interval Prediction |
---|---|---|---|
1 | 1 | 1.309 | (7.982 × , 3.763) |
6 | 3.985 | (3.898, 5.566) | |
2 | 1 | 1.414 | (4.707 × , 3.619) |
6 | 4.078 | (4.004, 5.696) | |
3 | 1 | 1.457 | (4.672 × , 3.666) |
6 | 3.833 | (3.817, 6.542) |
BSEL | LINEX | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CS | MLE | SEL | ||||||||
0.08360 | 0.1125 | 0.1067 | 0.1009 | 0.09516 | 0.08938 | 0.07764 | 0.1013 | 0.05868 | 0.06071 | |
0.02461 | .02383 | 0.02398 | 0.02414 | 0.02430 | 0.02446 | 0.02546 | 0.02360 | 0.02696 | 0.02680 | |
0.07455 | 0.09943 | 0.09446 | 0.08948 | 0.08450 | 0.07953 | 0.06870 | 0.08973 | 0.05189 | 0.05369 | |
0.02526 | 0.02449 | 0.02464 | 0.02480 | 0.02495 | 0.02510 | 0.02612 | 0.02426 | 0.02761 | 0.02745 |
BSEL | LINEX | ||||||||
---|---|---|---|---|---|---|---|---|---|
CS | SEL | ||||||||
0.1171 | 0.1104 | 0.1037 | 0.09701 | 0.09031 | 0.09774 | 0.1044 | 0.09331 | 0.09782 | |
0.02331 | 0.02357 | 0.02383 | 0.02409 | 0.02435 | 0.02446 | 0.02401 | 0.02426 | 0.02381 | |
0.1045 | 0.09850 | 0.09251 | 0.08653 | 0.08054 | 0.09351 | 0.09069 | 0.08440 | 0.08858 | |
0.02405 | 0.02429 | 0.02453 | 0.02478 | 0.02502 | 0.02428 | 0.02447 | 0.02477 | 0.02445 |
CS | Asymptotic | Bootstrap-p | Bootstrap-t | HPD |
---|---|---|---|---|
(0.001083, 0.1661) | (0.02024, 0.2246) | (0.01836, 0.2146) | (0.007255, 0.1017) | |
(0.01715, 0.03207) | (0.01784, 0.03746) | (0.01766, 0.03789) | (0.02008, 0.04409) | |
(0.0008985, 0.1482) | (0.01639, 0.1995) | (0.01641, 0.2031) | (0.02321, 0.1732) | |
(0.01781, 0.03270) | (0.01810, 0.03904) | (0.01820, 0.03875) | (0.01878, 0.03419) |
CS | v | Point Prediction | Interval Prediction |
---|---|---|---|
1 | 41.53805 | (6.196145 × , 79.12604) | |
5 | 136.6431 | (74.30713, 188.8303) | |
1 | 43.12672 | (5.896611 × , 94.66528) | |
5 | 126.0958 | (86.76296, 169.7341) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Gui, W. Estimation and Prediction for Gompertz Distribution under General Progressive Censoring. Symmetry 2021, 13, 858. https://doi.org/10.3390/sym13050858
Wang Y, Gui W. Estimation and Prediction for Gompertz Distribution under General Progressive Censoring. Symmetry. 2021; 13(5):858. https://doi.org/10.3390/sym13050858
Chicago/Turabian StyleWang, Yuxuan, and Wenhao Gui. 2021. "Estimation and Prediction for Gompertz Distribution under General Progressive Censoring" Symmetry 13, no. 5: 858. https://doi.org/10.3390/sym13050858
APA StyleWang, Y., & Gui, W. (2021). Estimation and Prediction for Gompertz Distribution under General Progressive Censoring. Symmetry, 13(5), 858. https://doi.org/10.3390/sym13050858