Transition from Discrete to Continuous Media: The Impact of Symmetry Changes on Asymptotic Behavior of Waves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Waves in Lagrange Lattice
2.2. Classical Continuous Approximations by Wave Equation
2.3. Various Gradient Models
2.4. Asymptotic Behavior of Schrödinger‘s Solution
2.5. Improved Continuous Models for Describing Wave Motion
2.6. Approximation of Phase and Group Velocities
2.7. Asymptotic Behavior of Continuous Approximations
2.8. Nonlinear Problems
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Some Terminological Remarks
References
- Andrianov, I.V.; Manevitch, L.I. Asymptotology: Ideas, Methods, and Applications; Kluwer: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Kolmogorov, A.N. Combinatorial foundations of information theory and the calculus of probabilities. Russ. Math. Surv. 1983, 38, 29–40. [Google Scholar] [CrossRef]
- Andrianov, I.; Starushenko, G.; Kvitka, S.; Khajiyeva, L. The Verhulst-like equations: Integrable O∆E and ODE with chaotic behavior. Symmetry 2019, 11, 1446. [Google Scholar] [CrossRef] [Green Version]
- Kunin, I.A. Elastic Media with Microstructure. 1. One-dimensional Models; Springer: Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Andrianov, I.V. Continuous approximation of higher-frequency oscillation of a chain. Dokl. AN Ukr. SSR Ser. A 1991, 2, 13–15. (In Russian) [Google Scholar]
- Kurchanov, P.; Myshkis, A.; Filimonov, A. Vibrations of rolling stock and a theorem of Kronecker. J. Appl. Math. Mech. 1991, 55, 870–876. [Google Scholar] [CrossRef]
- Filimonov, A.M. Continuous approximations of difference operators. J. Differ. Equ. Appl. 1996, 2, 411–422. [Google Scholar] [CrossRef]
- Metrikine, A.V.; Askes, H. One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure—Part 1: Generic formulation. Eur. J. Mech. A/Solids 2002, 21, 555–572. [Google Scholar] [CrossRef]
- Myshkis, A.D. Mixed functional differential equations. J. Math. Sci. 2005, 129, 4111–4226. [Google Scholar] [CrossRef]
- Lazar, M.; Maugin, G.A.; Aifantis, E.C. On a theory of nonlocal elasticity of bi-Helmholtz type and some applications. Int. J. Solids Struct. 2006, 43, 1404–1421. [Google Scholar] [CrossRef] [Green Version]
- Askes, H.; Metrikine, A.V.; Pichugin, A.V.; Bennett, T. Four simplified gradient elasticity models for the simulation of dis-persive wave propagation. Philos. Mag. 2008, 88, 3415–3443. [Google Scholar] [CrossRef] [Green Version]
- Challamel, N.; Rakotomanana, L.; Le Marrec, L. A dispersive wave equation using non-local elasticity. C. R. Mécanique 2009, 337, 591–595. [Google Scholar] [CrossRef]
- Andrianov, I.V.; Awrejcewicz, J.; Weichert, D. Improved continuous models for discrete media. Math. Probl. Eng. 2010, 2010, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Vasiliev, A.; Dmitriev, S.; Miroshnichenko, A. Multi-field approach in mechanics of structural solids. Int. J. Solids Struct. 2010, 47, 510–525. [Google Scholar] [CrossRef] [Green Version]
- Askes, H.; Aifantis, E.C. Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 2011, 48, 1962–1990. [Google Scholar] [CrossRef]
- Collins, M.A. A quasicontinuum approximation for solitons in an atomic chain. Chem. Phys. Lett. 1981, 77, 342–347. [Google Scholar] [CrossRef]
- Truskinovsky, L.; Vainchtein, A. Quasicontinuum modelling of short-wave instabilities in crystal lattices. Philos. Mag. 2005, 85, 4055–4065. [Google Scholar] [CrossRef] [Green Version]
- Andrianov, I.; Starushenko, G.; Weichert, D. Numerical investigation of 1D continuum dynamical models of discrete chain. ZAMM 2012, 92, 945–954. [Google Scholar] [CrossRef]
- Andrianov, I.V.; Danishevskyy, V.V.; Kaplunov, J.D.; Markert, B. Wide frequency higher-order dynamic model for transient waves in a lattice. In Problems of Nonlinear Mechanics and Physics of Materials; Andrianov, I.V., Manevich, A.I., Mikhlin, Y.V., Gendelman, O.V., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 3–12. [Google Scholar]
- Seeger, A. Historical note: On the simulation of dispersive wave propagation by elasticity models. Philos. Mag. 2010, 90, 1101–1104. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger, E. Zur Dynamik elastisch gekoppelter Punktsysteme. Ann. Phys. 1914, 349, 916–934. [Google Scholar] [CrossRef] [Green Version]
- Mühlich, U.; Abali, B.E.; dell’Isola, F. Commented translation of Erwin Schrödinger’s paper ‘On the dynamics of elastically coupled point systems’ (Zur dynamik elastisch gekoppelter Punktsysteme). Math. Mech. Solids 2021, 26, 133–147. [Google Scholar] [CrossRef]
- Gao, Q.; Wu, F.; Zhang, H.; Zhong, W.; Howson, W.; Williams, F. Exact solutions for dynamic response of a periodic spring and mass structure. J. Sound Vib. 2012, 331, 1183–1190. [Google Scholar] [CrossRef]
- Charlotte, M.; Truskinovsky, L. Lattice dynamics from a continuum viewpoint. J. Mech. Phys. Solids 2012, 60, 1508–1544. [Google Scholar] [CrossRef] [Green Version]
- Kaplunov, J.; Kossovich, L.Y.; Nolde, E. Dynamics of Thin Walled Elastic Bodies; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Metrikine, A. On causality of the gradient elasticity models. J. Sound Vib. 2006, 297, 727–742. [Google Scholar] [CrossRef]
- Zabusky, N.J.; Deem, G.S. Dynamics of nonlinear lattices I. Localized optical excitations, acoustic radiation, and strong nonlinear behavior. J. Comput. Phys. 1967, 2, 126–153. [Google Scholar] [CrossRef]
- Andrianov, I.V.; Danishevskyy, V.V.; Rogerson, G. Vibrations of nonlinear elastic lattices: Low- and high-frequency dynamic models, internal resonances and modes coupling. Proc. R. Soc. A 2020, 476, 20190532. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables; Dover: New York, NY, USA, 1965. [Google Scholar]
- Peierls, R.E. Quantum Theory of Solids; Clarendon Press: Oxford, UK, 1955. [Google Scholar]
- Schiff, L.I. Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Bauer, S.M.; Filippov, S.B.; Smirnov, A.L.; Tovstik, P.E.; Vaillancourt, R. Asymptotic Methods in Mechanics of Solids; Birkhäuser: Basel, Switzerland, 2015. [Google Scholar]
- Watson, G.N. A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge UP: Cambridge, UK, 1966. [Google Scholar]
- Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics; Springer: Berlin, Germany, 1966. [Google Scholar]
- Slepyan, L.I. Non-Steady-State Elastic Waves; Sudostroyenie: Leningrad, URSS, 1972. (In Russian) [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Electrodynamics of Continuous Media, 2nd ed.; Pergamon Press: London, UK, 1984. [Google Scholar]
- Levin, M.L. How light conquers darkness (W.R. Hamilton and the concept of group velocity). Sov. Phys. Uspekhi 1978, 21, 639–640. [Google Scholar] [CrossRef]
- Brillouin, L. Wave Propagation and Group Velocity; Academic Press: New York, NY, USA, 1960. [Google Scholar]
- Brillouin, L. Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, 2nd ed.; Dover: Mineola, NY, USA, 2003. [Google Scholar]
- Clerc, M.G.; Elías, R.G.; Rojas, R.G. Continuous description of lattice discreteness effects in front propagation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 412–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenau, P. Dynamics of nonlinear mass-spring chains near the continuum limit. Phys. Lett. A 1986, 118, 222–227. [Google Scholar] [CrossRef]
- Rosenau, P. Dynamics of dense lattices. Phys. Rev. B 1987, 36, 5868–5876. [Google Scholar] [CrossRef]
- Scott, A. Nonlinear Science. Emergence and Dynamics of Coherent Structures, 2nd ed.; Cambridge UP: Cambridge, UK, 2003. [Google Scholar]
- Andrianov, I.V. Mathematical models in pure and applied mathematics. In Nonlinear Dynamics of Discrete and Continuous Systems; Abramyan, A.K., Andrianov, I.V., Gaiko, V.A., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 15–30. [Google Scholar]
- Pinney, E. Ordinary Difference-Differential Equations; University California Press: Berkeley, CA, USA, 1958. [Google Scholar]
- Burkhardt, H. Entwicklungen nach oscillirenden Funktionen und Integration der Differentialgleichungen der mathematischen Physik. Jahresber. Dtsch. Math. Ver. 1908, 10, 1–1804. [Google Scholar]
- Bernoulli, I. Meditationes de chordis vibrantibus. Comment. Acad. Sci. Imper. Petropol. 1728, 3, 13–28. [Google Scholar]
- Giblak, N. Resolution of the 300-year-old vibrating string controversy. arXiv 2018, arXiv:1803.05287. Available online: https://arxiv.org/abs/1803.05287 (accessed on 1 January 2021).
- Lagrange, J.L. Méchanique Analitique; Chez la Veuve Desaint: Paris, 1788; Eng. Transl.: Analytical Mechanics; Springer: Dordrecht, The Netherlands, 1977. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrianov, I.; Koblik, S.; Starushenko, G. Transition from Discrete to Continuous Media: The Impact of Symmetry Changes on Asymptotic Behavior of Waves. Symmetry 2021, 13, 1008. https://doi.org/10.3390/sym13061008
Andrianov I, Koblik S, Starushenko G. Transition from Discrete to Continuous Media: The Impact of Symmetry Changes on Asymptotic Behavior of Waves. Symmetry. 2021; 13(6):1008. https://doi.org/10.3390/sym13061008
Chicago/Turabian StyleAndrianov, Igor, Steve Koblik, and Galina Starushenko. 2021. "Transition from Discrete to Continuous Media: The Impact of Symmetry Changes on Asymptotic Behavior of Waves" Symmetry 13, no. 6: 1008. https://doi.org/10.3390/sym13061008
APA StyleAndrianov, I., Koblik, S., & Starushenko, G. (2021). Transition from Discrete to Continuous Media: The Impact of Symmetry Changes on Asymptotic Behavior of Waves. Symmetry, 13(6), 1008. https://doi.org/10.3390/sym13061008