Symmetric and Asymmetric Data in Solution Models
Abstract
:1. Introduction
- Processing complex and varied raw data and examining new operators;
- Examining symmetry phenomena in artificial intelligence;
- Identifying symmetry in conforming problems aimed at solving social management problems;
- Predicting trends in possible changes in time and its weight in dynamic issues;
- Studying intelligent algorithms and encouraging their stability and reliability.
- 6.
- Imprecise definition of alternatives, assessment criteria and preferences (or preference scenarios);
- 7.
- Inaccurate measurement of the impact of other options on the assessment criteria and preferential weights.
2. Contributions
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gompf, K.; Traverso, M.; Hetterich, J. Using Analytical Hierarchy Process (AHP) to Introduce Weights to Social Life Cycle Assessment of Mobility Services. Sustainability 2021, 13, 1258. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Q. An Integrated MCDM Approach to Train Derailment Risk Response Strategy Selection. Symmetry 2019, 12, 47. [Google Scholar] [CrossRef] [Green Version]
- Marwala, T.; Hurwitz, E. Artificial Intelligence and Economic Theory: Skynet in the Market; Springer Science and Business Media LLC: London, UK, 2017. [Google Scholar]
- Paliwal, V.; Chandra, S.; Sharma, S. Blockchain Technology for Sustainable Supply Chain Management: A Systematic Literature Review and a Classification Framework. Sustainability 2020, 12, 7638. [Google Scholar] [CrossRef]
- Bergh, D.D.; Ketchen, J.D.J.; Orlandi, I.; Heugens, P.P.M.A.R.; Boyd, B.K. Information Asymmetry in Management Research: Past Accomplishments and Future Opportunities. J. Manag. 2019, 45, 122–158. [Google Scholar] [CrossRef]
- Schmidt, J.; Keil, T. What Makes a Resource Valuable? Identifying the Drivers of Firm-Idiosyncratic Resource Value. Acad. Manag. Rev. 2013, 38, 206–228. [Google Scholar] [CrossRef]
- Ozmel, U.; Reuer, J.J.; Gulati, R. Signals across Multiple Networks: How Venture Capital and Alliance Networks Affect Interorganizational Collaboration. Acad. Manag. J. 2013, 56, 852–866. [Google Scholar] [CrossRef] [Green Version]
- Shepard, R.N. The analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika 1962, 27, 125–140. [Google Scholar] [CrossRef]
- Shepard, R.N. The analysis of proximities: Multidimensional scaling with an unknown distance function. II. Psychometrika 1962, 27, 219–246. [Google Scholar] [CrossRef]
- Harshman, R.A. Models for Analysis of Asymmetrical Relationships among N Objects or Stimuli. In Proceedings of the First Joint Meeting of the Psychometric Society and the Society of Mathematical Psychology, Hamilton, ON, Canada, 25–27 August 1978. [Google Scholar]
- Harshman, R.A. DEDICOM Multidimensional Analysis of Skew-Symmetric Data. Part I: Theory; Unpublished Technical Memorandum; Bell Laboratories: Murray Hill, NJ, USA, 1981. [Google Scholar]
- Harshman, R.A. Scaling and Rotation DEDICOM solutions; Unpublished Manuscript; University of Western Ontario: London, ON, Canada, 1982. [Google Scholar]
- Harshman, R.A. DEDICOM: A Family of Models Generalizing Factor Analysis and Multidimensional Scaling for Decomposition of Asymmetric Relationships; Unpublished Manuscript; University of Western Ontario: London, ON, Canada, 1982. [Google Scholar]
- Harshman, R.A.; Green, P.E.; Wind, Y.; Lundy, M.E. A Model for the Analysis of Asymmetric Data in Marketing Research. Mark. Sci. 1982, 1, 205–242. [Google Scholar] [CrossRef]
- Echarri-Iribarren, V.; Sotos-Solano, C.; Espinosa-Fernández, A.; Prado-Govea, R. The Passivhaus Standard in the Spanish Mediterranean: Evaluation of a House’s Thermal Behaviour of Enclosures and Airtightness. Sustainability 2019, 11, 3732. [Google Scholar] [CrossRef] [Green Version]
- Łuczak, A.; Just, M. A Complex MCDM Procedure for the Assessment of Economic Development of Units at Different Government Levels. Mathematics 2020, 8, 1067. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Hsieh, H.-L.; Chen, H. Evaluating the Investment Projects of Spinal Medical Device Firms Using the Real Option and DANP-mV Based MCDM Methods. Int. J. Environ. Res. Public Health 2020, 17, 3335. [Google Scholar] [CrossRef]
- Wang, C.-N.; Yang, C.-Y.; Cheng, H.-C. A Fuzzy Multicriteria Decision-Making (MCDM) Model for Sustainable Supplier Evaluation and Selection Based on Triple Bottom Line Approaches in the Garment Industry. Processes 2019, 7, 400. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.-C.; Chang, H.-H.; Lu, M.-T. Evaluating Industry 4.0 Technology Application in SMEs: Using a Hybrid MCDM Approach. Mathematics 2021, 9, 414. [Google Scholar] [CrossRef]
- Turskis, Z.; Goranin, N.; Nurusheva, A.; Boranbayev, S. Information Security Risk Assessment in Critical Infrastructure: A Hybrid MCDM Approach. Informatica 2019, 30, 187–211. [Google Scholar] [CrossRef]
- Zhao, Q.; Tsai, P.-H.; Wang, J.-L. Improving Financial Service Innovation Strategies for Enhancing China’s Banking Industry Competitive Advantage during the Fintech Revolution: A Hybrid MCDM Model. Sustainability 2019, 11, 1419. [Google Scholar] [CrossRef] [Green Version]
- Dahooie, J.H.; Hajiagha, S.H.R.; Farazmehr, S.; Zavadskas, E.K.; Antucheviciene, J. A novel dynamic credit risk evaluation method using data envelopment analysis with common weights and combination of multi-attribute decision-making methods. Comput. Oper. Res. 2021, 129, 105223. [Google Scholar] [CrossRef]
- Li, B.; Xu, Z.; Zavadskas, E.K.; Antuchevičienė, J.; Turskis, Z. A Bibliometric Analysis of Symmetry (2009–2019). Symmetry 2020, 12, 1304. [Google Scholar] [CrossRef]
- Liu, G.; Fan, S.; Tu, Y.; Wang, G. Innovative Supplier Selection from Collaboration Perspective with a Hybrid MCDM Model: A Case Study Based on NEVs Manufacturer. Symmetry 2021, 13, 143. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. Solution Models based on Symmetric and Asymmetric Information. Symmetry 2019, 11, 500. [Google Scholar] [CrossRef] [Green Version]
- Marković, V.; Stajić, L.; Stević, Ž.; Mitrović, G.; Novarlić, B.; Radojičić, Z. A Novel Integrated Subjective-Objective MCDM Model for Alternative Ranking in Order to Achieve Business Excellence and Sustainability. Symmetry 2020, 12, 164. [Google Scholar] [CrossRef] [Green Version]
- Amato, A.; Andreoli, M.; Rovai, M. Adaptive Reuse of a Historic Building by Introducing New Functions: A Scenario Evaluation Based on Participatory MCA Applied to a Former Carthusian Monastery in Tuscany, Italy. Sustainability 2021, 13, 2335. [Google Scholar] [CrossRef]
- Pan, B.; Liu, S.; Xie, Z.; Shao, Y.; Li, X.; Ge, R. Evaluating Operational Features of Three Unconventional Intersections under Heavy Traffic Based on CRITIC Method. Sustainability 2021, 13, 4098. [Google Scholar] [CrossRef]
- Faizi, S.; Sałabun, W.; Rashid, T.; Zafar, S.; Wątróbski, J. Intuitionistic Fuzzy Sets in Multi-Criteria Group Decision Making Problems Using the Characteristic Objects Method. Symmetry 2020, 12, 1382. [Google Scholar] [CrossRef]
- Alyamani, R.; Long, S. The Application of Fuzzy Analytic Hierarchy Process in Sustainable Project Selection. Sustainability 2020, 12, 8314. [Google Scholar] [CrossRef]
- Dobrovolskienė, N.; Pozniak, A.; Tvaronavičienė, M. Assessment of the Sustainability of a Real Estate Project Using Multi-Criteria Decision Making. Sustainability 2021, 13, 4352. [Google Scholar] [CrossRef]
- Zolfani, S.H.; Zavadskas, E.K.; Turskis, Z. Design of Products with Both International and Local Perspectives based on Yin-Yang Balance Theory and Swara Method. Econ. Res. Ekon. Istraživanja 2013, 26, 153–166. [Google Scholar] [CrossRef]
- Studen, L.; Tiberius, V. Social Media, Quo Vadis? Prospective Development and Implications. Futur. Internet 2020, 12, 146. [Google Scholar] [CrossRef]
- Melnik-Leroy, G.A.; Dzemyda, G. How to Influence the Results of MCDM?—Evidence of the Impact of Cognitive Biases. Mathematics 2021, 9, 121. [Google Scholar] [CrossRef]
- Marhavilas, P.K.; Filippidis, M.; Koulinas, G.K.; Koulouriotis, D.E. A HAZOP with MCDM Based Risk-Assessment Approach: Focusing on the Deviations with Economic/Health/Environmental Impacts in a Process Industry. Sustainability 2020, 12, 993. [Google Scholar] [CrossRef] [Green Version]
- Baç, U. An Integrated SWARA-WASPAS Group Decision Making Framework to Evaluate Smart Card Systems for Public Transportation. Mathematics 2020, 8, 1723. [Google Scholar] [CrossRef]
- Baron, D.P.; Myerson, R.B. Regulating a Monopolist with Unknown Costs. Econometrica 1982, 50, 911. [Google Scholar] [CrossRef] [Green Version]
- Maskin, E.; Riley, J. Monopoly with Incomplete Information. RAND J. Econ. 1984, 15, 171. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, M.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. A new multi-criteria model based on interval type-2 fuzzy sets and EDAS method for supplier evaluation and order allocation with environmental considerations. Comput. Ind. Eng. 2017, 112, 156–174. [Google Scholar] [CrossRef]
- Faizi, S.; Sałabun, W.; Ullah, S.; Rashid, T.; Więckowski, J. A New Method to Support Decision-Making in an Uncertain Environment Based on Normalized Interval-Valued Triangular Fuzzy Numbers and COMET Technique. Symmetry 2020, 12, 516. [Google Scholar] [CrossRef] [Green Version]
- Keshavarz-Ghorabaee, M.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antuchevičienė, J. An Extended Step-Wise Weight Assessment Ratio Analysis with Symmetric Interval Type-2 Fuzzy Sets for Determining the Subjective Weights of Criteria in Multi-Criteria Decision-Making Problems. Symmetry 2018, 10, 91. [Google Scholar] [CrossRef] [Green Version]
- Dahooie, J.H.; Zavadskas, E.K.; Abolhasani, M.; Vanaki, A.; Turskis, Z. A Novel Approach for Evaluation of Projects Using an Interval–Valued Fuzzy Additive Ratio Assessment (ARAS) Method: A Case Study of Oil and Gas Well Drilling Projects. Symmetry 2018, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Radović, D.; Stević, Ž.; Pamučar, D.; Zavadskas, E.K.; Badi, I.; Antuchevičiene, J.; Turskis, Z. Measuring Performance in Transportation Companies in Developing Countries: A Novel Rough ARAS Model. Symmetry 2018, 10, 434. [Google Scholar] [CrossRef] [Green Version]
- Turskis, Z.; Antuchevičienė, J.; Keršulienė, V.; Gaidukas, G. Hybrid Group MCDM Model to Select the Most Effective Alternative of the Second Runway of the Airport. Symmetry 2019, 11, 792. [Google Scholar] [CrossRef] [Green Version]
- Turskis, Z.; Urbonas, K.; Daniūnas, A. A Hybrid Fuzzy Group Multi-Criteria Assessment of Structural Solutions of the Symmetric Frame Alternatives. Symmetry 2019, 11, 261. [Google Scholar] [CrossRef] [Green Version]
- Turskis, Z.; Dzitac, S.; Stankiuviene, A.; Šukys, R. A Fuzzy Group Decision-making Model for Determining the Most Influential Persons in the Sustainable Prevention of Accidents in the Construction SMEs. Int. J. Comput. Commun. Control 2019, 14, 90–106. [Google Scholar] [CrossRef]
- Zemlickienė, V.; Turskis, Z. Evaluation of the expediency of technology commercialization: A case of information technology and biotechnology. Technol. Econ. Dev. Econ. 2020, 26, 271–289. [Google Scholar] [CrossRef] [Green Version]
- Zavadskas, E.K.; Turskis, Z.; Volvačiovas, R.; Kildiene, S. Multi-criteria Assessment Model of Technologies. Stud. Inform. Control 2013, 22, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Sivilevicius, H.; Zavadskas, E.K.; Turskis, Z. Quality attributes and complex assessment methodology of the asphalt mixing plant. Balt. J. Road Bridg. Eng. 2008, 3, 161–166. [Google Scholar] [CrossRef]
- Erdogan, S.A.; Šaparauskas, J.; Turskis, Z. Decision Making in Construction Management: AHP and Expert Choice Approach. Procedia Eng. 2017, 172, 270–276. [Google Scholar] [CrossRef]
- Ruzgys, A.; Volvačiovas, R.; Ignatavičius, Č.; Turskis, Z. Integrated evaluation of external wall insulation in residential buildings using SWARA-TODIM MCDM method. J. Civ. Eng. Manag. 2014, 20, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Javanmardi, E.; Liu, S. Exploring Grey Systems Theory-Based Methods and Applications in Analyzing Socio-Economic Systems. Sustainability 2019, 11, 4192. [Google Scholar] [CrossRef] [Green Version]
- Turskis, Z.; Lazauskas, M.; Zavadskas, E.K. Fuzzy multiple criteria assessment of construction site alternatives for non-hazardous waste incineration plant in Vilnius city, applying ARAS-F and AHP methods. J. Environ. Eng. Landsc. Manag. 2012, 20, 110–120. [Google Scholar] [CrossRef]
- Vinogradova-Zinkevič, I.; Podvezko, V.; Zavadskas, E. Comparative Assessment of the Stability of AHP and FAHP Methods. Symmetry 2021, 13, 479. [Google Scholar] [CrossRef]
- Bausys, R.; Kazakeviciute-Januskeviciene, G. Qualitative Rating of Lossy Compression for Aerial Imagery by Neutrosophic WASPAS Method. Symmetry 2021, 13, 273. [Google Scholar] [CrossRef]
- Kala, Z. Global Sensitivity Analysis of Quantiles: New Importance Measure Based on Superquantiles and Subquantiles. Symmetry 2021, 13, 263. [Google Scholar] [CrossRef]
- Balali, A.; Valipour, A.; Antucheviciene, J.; Šaparauskas, J.; Balali, A. Improving the Results of the Earned Value Management Technique Using Artificial Neural Networks in Construction Projects. Symmetry 2020, 12, 1745. [Google Scholar] [CrossRef]
- Plebankiewicz, E.; Wieczorek, D. Adaptation of a Cost Overrun Risk Prediction Model to the Type of Construction Facility. Symmetry 2020, 12, 1739. [Google Scholar] [CrossRef]
- Kala, Z. From Probabilistic to Quantile-Oriented Sensitivity Analysis: New Indices of Design Quantiles. Symmetry 2020, 12, 1720. [Google Scholar] [CrossRef]
- Asogbon, M.G.; Samuel, O.W.; Jiang, Y.; Wang, L.; Geng, Y.; Sangaiah, A.K.; Chen, S.; Fang, P.; Li, G. Appropriate Feature Set and Window Parameters Selection for Efficient Motion Intent Characterization towards Intelligently Smart EMG-PR System. Symmetry 2020, 12, 1710. [Google Scholar] [CrossRef]
- Lescauskiene, I.; Bausys, R.; Zavadskas, E.K.; Juodagalviene, B. VASMA Weighting: Survey-Based Criteria Weighting Methodology that Combines ENTROPY and WASPAS-SVNS to Reflect the Psychometric Features of the VAS Scales. Symmetry 2020, 12, 1641. [Google Scholar] [CrossRef]
- Nestorenko, T.; Morkunas, M.; Peliova, J.; Volkov, A.; Balezentis, T.; Streimkiene, D. A New Model for Determining the EOQ under Changing Price Parameters and Reordering Time. Symmetry 2020, 12, 1512. [Google Scholar] [CrossRef]
- Birouaș, F.I.; Țarcă, R.C.; Dzitac, S.; Dzitac, I. Preliminary Results in Testing of a Novel Asymmetric Underactuated Robotic Hand Exoskeleton for Motor Impairment Rehabilitation. Symmetry 2020, 12, 1470. [Google Scholar] [CrossRef]
- Huang, S.-W.; Liou, J.J.; Tang, W.; Tzeng, G.-H. Location Selection of a Manufacturing Facility from the Perspective of Supply Chain Sustainability. Symmetry 2020, 12, 1418. [Google Scholar] [CrossRef]
- Karabašević, D.; Stanujkić, D.; Zavadskas, E.K.; Stanimirović, P.; Popović, G.; Predić, B.; Ulutaş, A. A Novel Extension of the TOPSIS Method Adapted for the Use of Single-Valued Neutrosophic Sets and Hamming Distance for E-Commerce Development Strategies Selection. Symmetry 2020, 12, 1263. [Google Scholar] [CrossRef]
- Roy, S.; Lee, J.-G.; Pal, A.; Samanta, S.K. Similarity Measures of Quadripartitioned Single Valued Bipolar Neutrosophic Sets and Its Application in Multi-Criteria Decision Making Problems. Symmetry 2020, 12, 1012. [Google Scholar] [CrossRef]
- Jocic, K.J.; Jocic, G.; Karabasevic, D.; Popovic, G.; Stanujkic, D.; Zavadskas, E.K.; Nguyen, P.T. A Novel Integrated PIPRECIA–Interval-Valued Triangular Fuzzy ARAS Model: E-Learning Course Selection. Symmetry 2020, 12, 928. [Google Scholar] [CrossRef]
- Zolfani, S.H.; Yazdani, M.; Torkayesh, A.E.; Derakhti, A. Application of a Gray-Based Decision Support Framework for Location Selection of a Temporary Hospital during COVID-19 Pandemic. Symmetry 2020, 12, 886. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, J.-H.; Huh, J.-H. Land Price Forecasting Research by Macro and Micro Factors and Real Estate Market Utilization Plan Research by Landscape Factors: Big Data Analysis Approach. Symmetry 2021, 13, 616. [Google Scholar] [CrossRef]
Countries | Number of Papers |
---|---|
Lithuania | 3 |
Czech Republic | 2 |
Poland | 1 |
Romania | 1 |
Taiwan | 1 |
Korea | 1 |
Iran–Lithuania | 1 |
China–Lithuania | 1 |
Ukraine–Slovakia–Lithuania | 1 |
Serbia–Turkey–Lithuania | 1 |
Serbia–Vietnam | 1 |
Korea–India | 1 |
China–India | 1 |
Chile–Spain–Turkey | 1 |
References | Applied/Developed Solution Methods | Type of Data Uncertainty | Application Areas |
---|---|---|---|
[54] | AHP, FAHP | Fuzzy sets | Numerical examples, no real case study |
[55] | Neutrosophic WASPAS | Single-valued neutrosophic sets | Evaluate the quality of the aerial image |
[56] | Global sensitivity analysis of quantiles | Uncertain model inputs as random variables | Resistance of a steel member under compression |
[57] | ANN | Crisp data | Construction project management |
[58] | Fuzzy inference model | Fuzzy sets | Construction project management |
[59] | Quantile-oriented sensitivity analysis | The variance of the input variable | Engineering tasks |
[60] | A pattern recognition (PR) algorithm | Neural information | Development of intelligent prosthetic/rehabilitation devices |
[61] | ENTROPY, WASPAS-SVNS, VASMA | Single-valued neutrosophic set | The choice of the kindergarten institution |
[62] | Wilson’s formulation | Varying parameters of the model | Supply chain management |
[63] | Pulley-cable transmission and Bowden cable transmission | Geometrical and behavioural parameters of the biological hand | Medical robotics: motor rehabilitation treatment |
[64] | DANP, Entropy, VIKOR, DANP-mV | Subjective and objective weights | Supply chain in electronic manufacturing |
[23] | Bibliometric analysis | Certain data | Bibliometric analysis of the Journal |
[65] | Extended TOPSIS | Single-valued neutrosophic sets | Ranking e-commerce development strategies |
[66] | QSVBNS | Quadripartitioned single-valued and bipolar neutrosophic sets (QSVNS and BNS) | Green supplier selection |
[67] | PIPRECIA, Interval-valued triangular fuzzy ARAS | Interval-valued triangular fuzzy sets | Evaluation of e-learning courses |
[68] | CRITIC, CoCoSo-G | Grey values | Location selection of a temporary hospital during COVID-19 pandemic |
[69] | Big data analysis, text mining, correlation analysis | Structured, unstructured and semi-structured data | Real estate market |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zavadskas, E.K.; Antucheviciene, J.; Turskis, Z. Symmetric and Asymmetric Data in Solution Models. Symmetry 2021, 13, 1045. https://doi.org/10.3390/sym13061045
Zavadskas EK, Antucheviciene J, Turskis Z. Symmetric and Asymmetric Data in Solution Models. Symmetry. 2021; 13(6):1045. https://doi.org/10.3390/sym13061045
Chicago/Turabian StyleZavadskas, Edmundas Kazimieras, Jurgita Antucheviciene, and Zenonas Turskis. 2021. "Symmetric and Asymmetric Data in Solution Models" Symmetry 13, no. 6: 1045. https://doi.org/10.3390/sym13061045
APA StyleZavadskas, E. K., Antucheviciene, J., & Turskis, Z. (2021). Symmetric and Asymmetric Data in Solution Models. Symmetry, 13(6), 1045. https://doi.org/10.3390/sym13061045