How Asymmetries Evolved: Hearts, Brains, and Molecules
Abstract
:1. The Symmetrical Background
2. Emerging Asymmetries
2.1. Internal Organs
2.2. Handedness
2.3. Cerebral Asymmetry in Humans
2.4. Cerebral Asymmetry in Animals
2.5. Cerebellar Asymmetries
3. The Genetics of Laterality
3.1. Handedness
3.2. Cerebral Asymmetry
4. Conclusions
The slightest loss of bilateral symmetry, such as the loss of a right eye, would have immediate negative value for the survival of any animal. An enemy could sneak up unobserved on the right!(p. 70).
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carroll, S.B. Chance and necessity: The evolution of morphological complexity and diversity. Nature 2001, 409, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.D.; Hughes, I.V.; Gehling, J.G.; Droser, M.L. Discovery of the oldest bilaterian from the Ediacaran of South Australia. Proc. Natl. Acad. Sci. USA 2020, 117, 7845–7850. [Google Scholar] [CrossRef] [PubMed]
- Bridi, J.C.; Ludlow, Z.N.; Kottler, B.; Hartmann, B.; Broeck, L.V.; Dearlove, J.; Göker, M.; Strausfeld, N.J.; Callaerts, P.; Hirth, F. Ancestral regulatory mechanisms specify conserved midbrain circuitry in arthropods and vertebrates. Proc. Natl. Acad. Sci. USA 2020, 117, 19544–19555. [Google Scholar] [CrossRef]
- Descartes, R. Treatise on the Passions of the Soul. In Descartes: Philosophical Writings; Trans. N. K. Smith; Modern Library: New York, NY, USA, 1649/1958.
- Eling, P.; Finger, S. Franz Joseph Gall on hemispheric symmetries. J. Hist. Neurosci. 2020, 29, 325–338. [Google Scholar] [CrossRef] [Green Version]
- Corballis, M.C.; Beale, I.L. Bilateral symmetry and behavior. Psychol. Rev. 1970, 77, 451–464. [Google Scholar] [CrossRef]
- Standing, L.; Conezio, J.; Haber, R.N. Perception and memory for pictures: Single-trial learning of 2500 visual stimuli. Psychon. Sci. 1970, 19, 73–74. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.-P.; Koch, A.-M. Mirror writing in typically developing children: A first longitudinal study. Cogn. Dev. 2016, 38, 114–124. [Google Scholar] [CrossRef]
- Corballis, M.C. Mirror-image equivalence and interhemispheric mirror-image reversal. Front. Hum. Neurosci. 2018, 12, 140. [Google Scholar] [CrossRef] [PubMed]
- Logothetis, N.K.; Pauls, J.; Poggio, T. Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 1995, 5, 552–563. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.R.; Mota, N.B.; Adamy, N.; Naschold, A.; Lima, T.; Copelli, M.; Weissheimer, J.; Pegado, F.; Ribeiro, S. Selective inhibition of mirror invariance for letters consolidated by sleep doubles reading fluency. Curr. Biol. 2021, 31, 742–752. [Google Scholar] [CrossRef]
- Torgersen, J. Situs inversus, asymmetry, and twinning. Am. J. Hum. Genet. 1950, 2, 361–370. [Google Scholar] [PubMed]
- Douard, R.; Feldman, A.; Bargy, F.; Loric, S.; Delmas, V. Anomalies of lateralization in man a case of total situs inversus. Surg. Radiol. Anat. 2000, 22, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Layton, W.M., Jr. Random determination of a developmental process. J. Hered. 1976, 67, 336–338. [Google Scholar] [CrossRef]
- Patten, B.M. The formation of the cardiac loop in the chick. Am. J. Anat. 1922, 30, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Boorman, C.J.; Shimeld, S.M. Pitx homeobox genes in Ciona and amphioxus show left–right asymmetry is a conserved chordate character and define the ascidian adenohypophysis. Evol. Dev. 2002, 4, 354–365. [Google Scholar] [CrossRef]
- Kilner, P.J.; Yang, G.-Z.; Wilkes, A.J.; Mohiaddin, R.H.; Firmin, D.N.; Yacoub, M.H. Asymmetric redirection of flow through the heart. Nature 2000, 404, 759–761. [Google Scholar] [CrossRef] [PubMed]
- Giljov, A.; Karenina, K.; Ingram, J.; Malashichev, Y. Parallel emergence of true handedness in the evolution of marsupials and placentals. Curr. Biol. 2015, 14, 1778–1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocklenburg, S.; Isparta, S.; Peterburs, J.; Papadatou-Pastou, M. Paw preferences in cats and dogs: Meta-analysis. Laterality 2019, 24, 647–677. [Google Scholar] [CrossRef] [PubMed]
- Ströckens, F.; Güntürkün, O.; Ocklenburg, S. Limb preferences in non-human vertebrates. Laterality 2013, 18, 536–575. [Google Scholar] [CrossRef]
- Hopkins, W.D.; Wesley, M.J.; Izard, M.K.; Hook, M.; Schapiro, S.J. Chimpanzees (Pan troglodytes) are predominantly right-handed: Replication in three populations of apes. Behav. Neurosci. 2004, 118, 659–663. [Google Scholar] [CrossRef] [Green Version]
- Tabiowo, E.; Forrester, G.S. Structured bimanual actions and hand transfers reveal population-level right-handedness in captive gorillas. Anim. Behav. 2013, 86, 1049–1057. [Google Scholar] [CrossRef] [Green Version]
- Westergaard, G.C.; Suomi, S.J. Hand preference for a bimanual task in tufted capuchins (Cebus apella) and rhesus macaques (Macaca mulatta). J. Comp. Psychol. 1996, 110, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Levermann, N.; Galatius, A.; Ehlme, G.; Rysgaard, S.; Born, E.W. Feeding behaviour of free-ranging walruses with notes on apparent dextrality of flipper use. BMC Ecol. 2003, 3, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, H.; Davis, M. “Left-handedness” in parrots. Auk 1938, 35, 478–480. [Google Scholar] [CrossRef]
- Ghirlanda, S.; Vallortigara, G. The evolution of brain lateralization: A game-theoretical analysis of population structure. Proc. Biol. Sci. 2004, 271, 853–857. [Google Scholar] [CrossRef] [Green Version]
- Watson, N.V.; Kimura, D. Right-hand superiority for throwing but not for intercepting. Neuropsychologia 1989, 27, 1399–1414. [Google Scholar] [CrossRef]
- Broca, P. Remarques sur le siège de la faculté du langage articulé, suivies d’une observation d’aphémie (perte de la parole). Bull. Société Anatomique 1861, 36, 330–357. [Google Scholar]
- Broca, P. Sur le siège de la faculté du langage articulé. Bull. Société d’Anthropol. 1865, 63, 77–93. [Google Scholar] [CrossRef] [Green Version]
- Dax, M. Lésions de la moitié gauche de l’encéphale coïncident avec l’oubli des signes de la pensée (lu à Montpellier en 1836). Bull. Hebdomadaire Médecine Chirurgie, 2me Série 1865, 2, 259–262. [Google Scholar]
- Wernicke, K. Der Aphasische Symptomencomplex. Eine Psychologische Studie auf Anatomischer Basis; M. Cohn U. Weigart: Breslau, Poland, 1874. [Google Scholar]
- Leblanc, R. Fearful asymmetry: Bouillaud, Dax, Broca, and the Localization of Language, Paris, 1825–1879; McGill-Queen’s University Press: Kingston, ON, Canada, 2017. [Google Scholar]
- Harrington, A. Nineteenth-century ideas on hemisphere differences and duality of mind. Behav. Brain Sci. 1985, 8, 617–634. [Google Scholar] [CrossRef]
- Gazzaniga, M.S.; Sperry, R.W. Language after section of the cerebral commissures. Brain 1967, 90, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Ornstein, R.E. The Psychology of Consciousness; Freeman: San Francisco, CA, USA, 1972. [Google Scholar]
- Sperry, R.W. Some effects of disconnecting the cerebral hemisphere. Science 1982, 217, 1223–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corballis, M.C. The Lopsided Ape; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Crow, T.J. Why cerebral asymmetry is the key to the origin of Homo sapiens: How to find the gene or eliminate the theory. Curr. Psychol. Cogn. 1998, 17, 1237–1277. [Google Scholar]
- Berwick, R.C.; Chomsky, N. Why Only Us? Language and Evolution; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Packheiser, J.; Schmidt, J.; Arning, L.; Beste, C.; Güntürkün, O.; Ocklenburg, S. A large-scale estimate on the relationship between language and motor lateralization. Sci. Rep. 2020, 10, 13027. [Google Scholar] [CrossRef] [PubMed]
- Badzakova-Trajkov, G.; Häberling, I.S.; Roberts, R.P.; Corballis, M.C. Cerebral asymmetries: Complementary and independent processes. PLoS ONE 2010, 5, e9682. [Google Scholar] [CrossRef] [PubMed]
- Vingerhoets, G.; Li, X.; Hou, L.; Bogaert, S.; Verhelst, H.; Gerrits, R.; Siugzdaite, R.; Roberts, N. Brain structural and functional asymmetry in human situs inversus totalis. Brain Struct. Funct. 2018, 223, 1937–1952. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.Z.; Mathias, S.R.; Guadalupe, T.; Group, E.L.W.; Glahn, D.C.; Franke, B.; Crivello, F.; Tzourio-Mazoyer, N.; Fisher, S.E.; Thompson, P.M.; et al. Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proc. Natl. Acad. Sci. USA 2018, 115, E1154–E1163. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Stufflebeam, S.M.; Sepulcre, J.; Hedden, T.; Buckner, R.L. Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proc. Natl. Acad. Sci. USA 2009, 106, 20499–20503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badzakova-Trajkov, G.; Corballis, M.C.; Häberling, I.S. Complementarity or independence of hemispheric specializations? A brief review. Neuropsychologia 2016, 93, 386–393. [Google Scholar] [CrossRef]
- Häberling, I.S.; Corballis, P.M.; Corballis, M.C. Language, gesture, and handedness: Evidence for independent lateralized networks. Cortex 2016, 82, 72–85. [Google Scholar] [CrossRef]
- Rogers, L.J.; Vallortigara, G.; Andrew, R.J. Divided Brains: The Biology and Behaviour of Brain Asymmetries; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Lindell, A.K. Continuities in emotion lateralization in human and nonhuman primates. Front. Hum. Neurosci. 2013, 7, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siniscalchi, M.; Quaranta, A.; Rogers, L.J. Hemispheric specialization in dogs for processing different acoustic stimuli. PLoS ONE 2008, 3, e3349. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.V.; Proops, L.; Grounds, K.; Wathan, J.; Scott, S.K.; McComb, K. Domestic horses (Equus caballus) discriminate between negative and positive human nonverbal vocalisations. Sci. Rep. 2018, 8, 13052. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J. Asymmetry of motor behavior and sensory perception: Which comes first? Symmetry 2020, 12, 690. [Google Scholar] [CrossRef]
- Rutherford, H.J.V.; Lindell, A.K. Thriving and surviving: Approach and avoidance motivation and lateralization. Emotion Rev. 2011, 3, 333–343. [Google Scholar] [CrossRef]
- Geschwind, N.; Levitsky, W. Human brain: Left-right asymmetries in temporal speech region. Science 1968, 161, 186–187. [Google Scholar] [CrossRef]
- Gannon, P.J.; Holloway, R.L.; Broadfield, D.C.; Braun, A.R. Asymmetry of chimpanzee planum temporale: Humanlike pattern of Wernicke’s brain language area homolog. Science 1998, 279, 220–222. [Google Scholar] [CrossRef]
- Hopkins, W.D.; Nir, T.M. Planum temporale surface area and grey matter asymmetries in chimpanzees (Pan troglodytes): The effect of handedness and comparison with findings in humans. Behav. Brain Res. 2010, 208, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Spocter, M.A.; Sherwood, C.C.; Schapiro, S.J.; Hopkins, W.D. Reproducibility of leftward planum temporale asymmetries in two genetically isolated populations of chimpanzees (pan troglodytes). Proc. Royal Soc. B 2020, 287, 20201320. [Google Scholar] [CrossRef]
- Marie, D.; Roth, M.; Lacoste, R.; Nazarian, B.; Bertello, A.; Anton, J.-L.; Meguerditchian, A. left brain asymmetry of the planum temporale in a nonhominid primate: Redefining the origin of brain specialization for language. Cereb. Cort. 2018, 28, 1808–1815. [Google Scholar] [CrossRef] [Green Version]
- Becker, Y.; Sein, J.; Velly, L.; Giacomino, L.; Renaud, L.; Lacoste, R.; Anton, J.-L.; Nazarian, B.; Berne, C.; Meguerditchian, A. Early left-planum temporale asymmetry in newborn monkeys (Papio anubis): A longitudinal structural MRI study at two stages of development. NeuroImage 2021, 227, 117575. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.S.; Highley, J.R.; Garcia-Finana, M.; Sluming, V.; Rezaie, R.; Roberts, N. Sulcal variability, stereological measurement and asymmetry of Broca’s area on MR images. J. Anat. 2007, 211, 534–555. [Google Scholar] [CrossRef] [PubMed]
- Cantalupo, C.; Hopkins, W.D. Asymmetric Broca’s area in great apes. Nature 2001, 414, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graïc, J.-M.; Peruffo, A.; Corain, L.; Centelleghe, C.; Granato, A.; Zanellato, E.; Cozzi, B. Asymmetry in the cytoarchitecture of the area 44 homolog of the brain of the chimpanzee pan troglodytes. Front. Neuroanat. 2020, 14, 56. [Google Scholar] [CrossRef]
- Friederici, A.D. Hierarchy processing in human neurobiology: How specific is it? Phil. Trans. R. Soc. B 2019, 375, 20180391. [Google Scholar] [CrossRef]
- Fitch, W.T.; Hauser, M.D. Computational constraints on syntactic processing in a nonhuman primate. Science 2004, 303, 377–380. [Google Scholar] [CrossRef] [Green Version]
- Corballis, M.C. On phrase-structure and brain responses: A comment on Bahlmann, Gunter, and Friederici (2006). J. Cogn. Neurosci. 2007, 19, 1581–1583. [Google Scholar] [CrossRef]
- Corballis, M.C. Recursion, language, and starlings. Cogn. Sci. 2007, 31, 697–704. [Google Scholar] [CrossRef]
- Wang, D.; Buckner, R.L.; Liu, H. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J. Neurophysiol. 2013, 109, 46–57. [Google Scholar] [CrossRef]
- Häberling, I.S.; Corballis, M.C. Cerebellar asymmetry, cortical asymmetry and handedness: Two independent networks. Laterality Asymmetries Body Brain Cogn. 2016, 21, 397–414. [Google Scholar] [CrossRef]
- Guadalupe, T.; Kong, T.; Kong, X.-Z.; Akkermans, S.E.A.; Fisher, S.E.; Francks, C. Relations between hemispheric asymmetries of grey matter and auditory processing of spoken syllables in 281 healthy adults. Brain Struct. Funct. 2021. [Google Scholar] [CrossRef]
- Sereno, M.I.; Diedrichsen, J.; Tachrount, M.; Testa-Silva, G.; d’Arceuil, H.; De Zeeuw, C. The human cerebellum has almost 80% of the surface area of the neocortex. Proc. Natl. Acad. Sci. USA 2020, 117, 19538–19543. [Google Scholar] [CrossRef] [PubMed]
- Pilcher, D.; Hammock, L.; Hopkins, W.D. Cerebral volume asymmetries in non-human primates as revealed by magnetic resonance imaging. Laterality 2001, 6, 165–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, K.A.; Hopkins, W.D. Exploring the relationship between cerebellar asymmetry and handedness in chimpanzees (Pan troglodytes) and capuchins (Cebus paella). Neuropsychologia 2007, 45, 2333–2339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantalupo, C.; Freeman, H.; Rodes, W.; Hopkins, W.D. Handedness for Tool Use Correlates with Cerebellar Asymmetries in Chimpanzees (Pan troglodytes). Behav. Neurosci. 2008, 122, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guevara, E.E.; Hopkins, W.D.; Hof, P.R.; Ely, J.J.; Bradley, B.J.; Sherwood, C.C. Comparative analysis reveals distinctive epigenetic features of the human cerebellum. PLoS Genet. 2021, 17, e1009506. [Google Scholar] [CrossRef] [PubMed]
- McManus, I.C.; Davison, A.; Armour, J.A.L. Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies. Ann. N. Y. Acad. Sci. 2013, 1288, 48–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medland, S.E.; Duffy, D.L.; Wright, M.J.; Geffen, G.M.; Hay, D.A.; Levy, F.; Van-Beijsterveldt, C.E.; Willemsen, G.; Townsend, G.C.; White, V.; et al. Genetic influences on handedness: Data from 25,732 Australian and Dutch twin families. Neuropsychologia 2009, 47, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Kovel, C.G.F.; Francks, C. The molecular genetics of hand preference revisited. Sci. Rep. 2019, 9, 5986. [Google Scholar] [CrossRef] [Green Version]
- Annett, M. Handedness and Brain Asymmetry: The Right Shift Theory; Psychology Press: Hove, UK, 2002. [Google Scholar]
- McManus, C. Right Hand, Left Hand; Weidenfeld & Nicolson: London, UK, 2002. [Google Scholar]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [Green Version]
- Cuellar-Partida, G.; Tung, J.Y.; Eriksson, N.; Albrecht, E.; Aliev, F.; Andreassen, O.A.; Barroso, I.; Beckmann, J.S.; Boks, M.P.; Boomsma, D.I.; et al. Genome-wide association study identifies 48 common genetic variants associated with handedness. Nat. Hum. Behav. 2021, 5, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Medland, S.E.; Duffy, D.L.; Wright, M.J.; Geffen, G.M.; Martin, N.G. Handedness in twins: Joint analysis of data from 35 samples. Twin Res. Human Genet. 2006, 9, 46–53. [Google Scholar] [CrossRef]
- Corballis, M.C.; Hattie, J.; Fletcher, R. Handedness and intellectual achievement: An even-handed look. Neuropsychologia 2008, 46, 374–378. [Google Scholar] [CrossRef]
- Crow, T.J.; Crow, L.R.; Done, D.J.; Leask, S. Relative hand skill predicts academic ability: Global deficits at the point of hemispheric indecision. Neuropsychologia 1998, 36, 1275–1282. [Google Scholar] [CrossRef]
- De Kovel, C.G.F.; Carrión-Castillo, A.; Francks, C. A large-scale population study of early life factors influencing left-handedness. Sci. Rep. 2019, 9, 584. [Google Scholar] [CrossRef] [Green Version]
- Deep-Soboslay, T.M.; Calicott, J.P.; Lener, M.S.; Verchinski, B.A.; Apud, J.A.; Weinberger, D.R.; Apud, J.A.; Weinberger, D.R.; Elvevåg, B. Handedness, heritability, neurocognition and brain asymmetry in schizophrenia. Brain 2010, 133, 3113–3122. [Google Scholar] [CrossRef] [Green Version]
- Markou, P.; Ahtam, B.; Papadatou-Pastou, M. Elevated levels of atypical handedness in autism: Meta-analyses. Neuropsychol. Rev. 2017, 27, 258–283. [Google Scholar] [CrossRef]
- Scerri, T.S.; Brandler, W.M.; Paraccini, S.; Morris, A.P.; Ring, S.M.; Richardson, A.J.; Talcott, J.B.; Stein, J.; Monaco, A.P. PCSK6 is associated with handedness in individuals with dyslexia. Hum. Mol. Genet. 2011, 20, 608–614. [Google Scholar] [CrossRef]
- Johnston, D.W.; Nicholls, M.E.R.; Shah, M.A.; Shields, M.A. Handedness, Health and Cognitive Development: Evidence from Children in the NLSY; Forschungsinstitut zur Zukunft der Arbeit: Bonn, Germany, 2010. [Google Scholar]
- Laland, K.N. Exploring gene–culture interactions: Insights from handedness, sexual selection and niche-construction case studies. Phil. Trans. R. Soc. B 2008, 363, 3577–3589. [Google Scholar] [CrossRef] [Green Version]
- Laland, K.N.; Kumm, J.; Van Horn, J.D.; Feldman, M.W. A gene-culture model of handedness. Behav. Genet. 1995, 25, 433–445. [Google Scholar] [CrossRef]
- Francks, C.; Maegawa, S.; Lauren, J.; Abrahams, B.S.; Velayos-Baeza, A.; Medland, S.E.; Colella, S.; Groszer, M.; McAuley, E.Z.; Caffrey, T.M.; et al. LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol. Psychiat. 2007, 12, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, K.U.; Mattheisen, M.; Muhleisen, T.W.; Roeske, D.; Schmal, C.; Breuer, R.; Schulte-Körne, G.; Müller-Myhsok, B.; Nöthen, N.N.; Hoffmann, P.; et al. Supporting evidence for LRRMT1 imprinting in schizophrenia. Mol. Psychiat. 2009, 14, 743–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sha, Z.; Schijven, D.; Carrion-Castillo, A.; Joliot, M.; Mazoyer, B.; Fisher, S.E.; Crivello, F.; Francks, C. The genetic architecture of structural left-right asymmetry of the human brain. Nature Hum. Behav. 2021. [Google Scholar] [CrossRef]
- Altarelli, I.; Leroy, F.; Monzalvo, K.; Fluss, J.; Billard, C.; Dehaene-Lambertz, G.; Galaburda, A.M.; Ramus, F. Planum temporale asymmetry in developmental dyslexia: Revisiting an old question. Hum. Brain Mapp. 2014, 35, 5717–5735. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.M.; Moussai, J.; Zohoori, S.; Goldkorn, A.; Khan, A.A.; Mega, M.S.; Small, G.W.; Cummings, J.L.; Toga, A.W. Cortical variability and asymmetry in normal aging and Alzheimer’s disease. Cereb. Cort. 1998, 8, 492–509. [Google Scholar] [CrossRef]
- Shaw, P.; Lalonde, F.; LePage, C.; Rabin, C.; Eckstrand, K.; Sharp, W.; Greenstein, D.; Evans, A.; Giedd, J.N.; Rapoport, J. Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder. Arch. Gen. Psychiat. 2009, 66, 888–896. [Google Scholar] [CrossRef]
- Tomarkenand, A.J.; Keener, A.D. Frontal brain asymmetry and depression: A self-regulatory perspective. Cognit. Emot. 1998, 12, 387–420. [Google Scholar] [CrossRef]
- Brandler, W.M.; Paracchini, S. The genetic relationship between handedness and neurodevelopmental disorders. Trends Mol. Genet. 2014, 20, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Szathmáry, E. Toward major evolutionary transitions theory 2.0. Proc. Natl. Acad. Sci. USA 2005, 102, 10104–10111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liègeois, F.; Baldeweg, T.; Connelly, A.; Gadian, D.G.; Mishkin, M.; Vargha-Khadem, V. fMRI abnormalities associated with FOXP2 gene mutation. Nat. Neurosci. 2003, 6, 1230–1237. [Google Scholar] [CrossRef]
- Alcock, K.J.; Passingham, R.E.; Watkins, K.E.; Vargha-Khadem, F. Oral dyspraxia in inherited speech and language impairment. Brain Lang. 2000, 75, 17–33. [Google Scholar] [CrossRef]
- Morgan, M.J.; Corballis, M.C. On the biological basis of human laterality: II. The mechanisms of inheritance. Behav. Brain Sci. 1978, 2, 269–277. [Google Scholar] [CrossRef]
- Afzelius, B.A. A human syndrome caused by immotile cilia. Science 1976, 193, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Almirantis, V. Left-right asymmetry in vertebrates. Bioessays 1995, 17, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.A.; Wolpert, L. The development of handedness in left/right asymmetry. Development 1990, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Amack, J.D. Cilia in vertebrate left-right patterning. Philosoph. Transact. Royal Soc. B-Biol. Sci. 2016, 371, 20150410. [Google Scholar] [CrossRef] [Green Version]
- Cooke, J. The evolutionary origins and significance of vertebrate left–right organisation. BioEssays 2004, 26, 413–421. [Google Scholar] [CrossRef]
- Afzelius, B.A.; Stenram, U. Prevalence and genetics of immotile-cilia syndrome and left-handedness. Int. J. Dev. Biol. 2006, 50, 571–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehaene, S.; Pegado, F.; Braga, L.W.; Ventura, P.; Nunes Filho, G.; Jobert, A.; Dehaene-Lambertz, G.; Kolinsky, R.; Morais, J.; Cohen, L. How learning to read changes the cortical networks for vision and language. Science 2010, 330, 1359–1364. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, P.R. Might hallucinations have social utility? A proposal for scientific study. J. Nerv. Ment. Dis. 2016, 204, 702–712. [Google Scholar] [CrossRef]
- Power, R.A.; Steinberg, S.; Bjornsdottir, G.; Rietveld, C.A.; Abdellaoui, A.; Nivard, M.M.; Johannesson, M.; Galesloot, T.E.; Hottenga, J.J.; Willemsen, G.; et al. Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nat. Neurosci. 2015, 18, 953–955. [Google Scholar] [CrossRef] [PubMed]
- Gardner, M. The Ambidextrous Universe; Allen Lane, The Penguin Press: London, UK, 1967. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corballis, M.C. How Asymmetries Evolved: Hearts, Brains, and Molecules. Symmetry 2021, 13, 914. https://doi.org/10.3390/sym13060914
Corballis MC. How Asymmetries Evolved: Hearts, Brains, and Molecules. Symmetry. 2021; 13(6):914. https://doi.org/10.3390/sym13060914
Chicago/Turabian StyleCorballis, Michael C. 2021. "How Asymmetries Evolved: Hearts, Brains, and Molecules" Symmetry 13, no. 6: 914. https://doi.org/10.3390/sym13060914
APA StyleCorballis, M. C. (2021). How Asymmetries Evolved: Hearts, Brains, and Molecules. Symmetry, 13(6), 914. https://doi.org/10.3390/sym13060914