Calculation of the Statistical Properties in Intermittency Using the Natural Invariant Density
Abstract
:1. Introduction
2. The Perron–Frobenius Operator
3. Evaluation of Statistical Properties
3.1. Evaluation of the RPD
3.2. Evaluation of Other Statistical Properties
4. Application to the Cusp Map
Results
5. Application to the Manneville Map
Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PDLL | Probability density of the laminar lengths |
RHS | Right-hand side |
RPD | Reinjection probability density function |
References
- Schuster, H.; Just, W. Deterministic Chaos; Wiley VCH: Mörlenbach, Germany, 2005. [Google Scholar]
- Nayfeh, A.; Balachandran, B. Applied Nonlinear Dynamics; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Elaskar, S.; del Rio, E. New Advances on Chaotic Intermittency and Its Applications; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Manneville, P. Intermittency, self-similarity and 1/f spectrum in dissipative dynamical systems. J. Phys. 1980, 41, 1235–1243. [Google Scholar] [CrossRef]
- Dubois, M.; Rubio, M.; Berge, P. Experimental evidence of intermittencies associated with a subharmonic bifurcation. Phys. Rev. Lett. 1983, 16, 1446–1449. [Google Scholar] [CrossRef]
- Stavrinides, S.; Miliou, A.; Laopoulos, T.; Anagnostopoulos, A. The intermittency route to chaos of an electronic digital oscillator. Int. J. Bifurc. Chaos 2008, 18, 1561–1566. [Google Scholar] [CrossRef]
- Krause, G.; Elaskar, S.; del Rio, E. Type I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrödinger equation. Nonlinear Dynam. 2014, 77, 455–466. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Arriaga, G.; Sanmartin, J.; Elaskar, S. Damping models in the truncated derivative nonlinear Schrödinger equation. Phys. Plasmas 2007, 14, 082108. [Google Scholar] [CrossRef] [Green Version]
- Nishiura, Y.; Ueyama, D.; Yanagita, T. Chaotic pulses for discrete reaction diffusion systems. SIAM J. App. Dyn. Syst. 2005, 4, 723–754. [Google Scholar] [CrossRef] [Green Version]
- De Anna, P.; Le Borgne, T.; Dentz, M.; Tartakovsky, A.; Bolster, D.; Davy, P. Flow intermittency, dispersion and correlated continuous time random walks in porous media. Phys. Rev. Lett. 2013, 110, 184502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stan, C.; Cristescu, C.; Dimitriu, D. Analysis of the intermittency behavior in a low-temperature discharge plasma by recurrence plot quantification. Phys. Plasmas 2010, 17, 042115. [Google Scholar] [CrossRef]
- Chian, A. Complex System Approach to Economic Dynamics. Lecture Notes in Economics and Mathematical Systems; Springer: Berlin, Germany, 2007. [Google Scholar]
- Zebrowski, J.; Baranowski, R. Type I intermittency in nonstationary systems: Models and human heart-rate variability. Physica A 2004, 336, 74–86. [Google Scholar] [CrossRef]
- Paradisi, P.; Allegrini, P.; Gemignani, A.; Laurino, M.; Menicucci, D.; Piarulli, A. Scaling and intermittency of brains events as a manifestation of consciousness. AIP Conf. Proc. 2012, 1510, 151–161. [Google Scholar]
- Fujisaka, H.; Kamifukumito, H.; Inoue, M. Intermittency associated with the breakdown of the chaos symmetry. Prog. Theor. Phys. 1983, 69, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Hnatič, M.; Honkonen, J.; Lučivjanský, T. Symmetry breaking in stochastic dynamics and turbulence. Symmetry 2019, 11, 1193. [Google Scholar] [CrossRef] [Green Version]
- Manneville, P.; Pomeau, Y. Intermittency and the Lorenz model. Phys. Lett. 1979, 75A, 1–2. [Google Scholar] [CrossRef]
- Pomeau, Y.; Manneville, P. Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 1980, 74, 189–197. [Google Scholar] [CrossRef]
- Price, T.; Mullin, P. An experimental observation of a new type of intermittency. Physica D 1991, 48, 29–52. [Google Scholar] [CrossRef]
- Platt, N.; Spiegel, E.; Tresser, C. On-off intermittency: A mechanism for bursting. Phys. Rev. Lett. 1993, 70, 279–282. [Google Scholar] [CrossRef]
- Pikovsky, A.; Osipov, G.; Rosenblum, M.; Zaks, M.; Kurths, J. Attractor–repeller collision and eyelet intermittency at the transition to phase synchronization. Phys. Rev. Lett. 1997, 79, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Kwak, Y.; Lim, T. Phase jumps near a phase synchronization transition in systems of two coupled chaotic oscillators. Phys. Rev. Lett. 1998, 81, 321–324. [Google Scholar] [CrossRef]
- Hramov, A.; Koronovskii, A.; Kurovskaya, M.; Boccaletti, S. Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization. Phys. Rev. Lett. 2006, 97, 114101. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, E.; Elaskar, S. Type III intermittency without characteristic relation. Chaos 2021, 31, 043127. [Google Scholar] [CrossRef]
- Hirsch, J.; Huberman, B.; Scalapino, D. Theory of intermittency. Phys. Rev. A 1982, 25, 519–532. [Google Scholar] [CrossRef]
- Elaskar, S.; del Rio, E.; Donoso, J. Reinjection probability density in type III intermittency. Phys. A 2011, 390, 2759–2768. [Google Scholar] [CrossRef]
- Del Rio, E.; Sanjuan, M.; Elaskar, S. Effect of noise on the reinjection probability density in intermittency. Commun. Nonlinear Sci. Numer. Simulat. 2012, 17, 3587–3596. [Google Scholar] [CrossRef]
- Del Rio, E.; Elaskar, S.; Makarov, S. Theory of intermittency applied to classical pathological cases. Chaos 2013, 23, 033112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- del Rio, E.; Elaskar, S.; Donoso, J. Laminar length and characteristic relation in type I intermittency. Commun. Nonlinear Sci. Numer. Simulat. 2014, 19, 967–976. [Google Scholar] [CrossRef]
- del Río, E.; Elaskar, S. On the intermittency theory. Int. J. Bifurc. Chaos 2016, 26, 1650228. [Google Scholar] [CrossRef]
- Elaskar, S.; del Río, E.; Costa, A. Reinjection probability density for type III intermittency with noise and lower boundary of reinjection. J. Comp. Nonlinear Dynam. 2017, 12, 031020-11. [Google Scholar] [CrossRef]
- Elaskar, S.; del Río, E.; Gutierrez Marcantoni, L. Non-uniform reinjection probability density function in type V intermittency. Nonlinear Dynam. 2018, 92, 683–697. [Google Scholar] [CrossRef]
- del Rio, E.; Elaskar, S. Experimental evidence of power law reinjection in chaotic intermittency. Commun. Nonlinear Sci. Numer. Simulat. 2018, 64, 122–134. [Google Scholar]
- Elaskar, S.; del Rio, E. Discontinuous reinjection probability density function in type v intermittency. J. Comp. Nonlinear Dynam. 2018, 13, 121001. [Google Scholar] [CrossRef]
- del Rio, E.; Elaskar, S. Experimental results versus computer simulations of noisy Poincare maps in an intermittency scenario. Regul. Chaotic Dyn. 2020, 25, 281–294. [Google Scholar] [CrossRef]
- Hemmer, P. The exact invariant density for a cusp-shaped return map. J. Phys. A Math. Gen. 1984, 17, L247–L249. [Google Scholar] [CrossRef]
- Beck, C.; Schogl, F. Thermodynamics of Chaotic Systems; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Del Rio, E.; Elaskar, S. New characteristic relation in type II intermittency. Int. J. Bifurc. Chaos 2010, 20, 1185–1191. [Google Scholar] [CrossRef]
- Lasota, A.; Mackey, M. Probabilistic Properties of Deterministic Systems; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Elaskar, S.; del Rio, E.; Zapico, E. Evaluation of the statistical properties for type-II intermittency using the Perron-Frobenius operator. Nonlinear Dynam. 2016, 86, 1107–1116. [Google Scholar] [CrossRef]
- Burden, R.; Faires, J.; Burden, A. Numerical Analysis, 10th ed.; Cengage Learning: Boston, MA, USA, 2014. [Google Scholar]
- Thaler, M. The invariant densities for maps modeling intermittency. J. Stat. Phys. 1994, 79, 739–741. [Google Scholar] [CrossRef]
L | C | ||||||
---|---|---|---|---|---|---|---|
Theoretical | 0.620 | 0.380 | 1.629 | 47.97 | 29.448 | 0.380 | 6,458,394 |
Numerical | 0.622 | 0.378 | 1.645 | 49.23 | 29.076 | 0.378 | 6,218,278 |
Error (E) | −0.32% | 0.529% | −0.97% | −2.55% | 1.278% | 0.529% | 3.86% |
L | C | ||||||
---|---|---|---|---|---|---|---|
Theoretical | 0.6326 | 0.3674 | 1.722 | 126.89 | 73.68 | 0.3674 | 2,492,860 |
Numerical | 0.632 | 0.368 | 1.717 | 128.16 | 74.64 | 0.368 | 2,468,143 |
Error (E) | 0.095% | −0.16% | 0.29% | −0.99% | −1.28% | −0.16% | 1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elaskar, S.; del Río, E.; Lorenzón, D. Calculation of the Statistical Properties in Intermittency Using the Natural Invariant Density. Symmetry 2021, 13, 935. https://doi.org/10.3390/sym13060935
Elaskar S, del Río E, Lorenzón D. Calculation of the Statistical Properties in Intermittency Using the Natural Invariant Density. Symmetry. 2021; 13(6):935. https://doi.org/10.3390/sym13060935
Chicago/Turabian StyleElaskar, Sergio, Ezequiel del Río, and Denis Lorenzón. 2021. "Calculation of the Statistical Properties in Intermittency Using the Natural Invariant Density" Symmetry 13, no. 6: 935. https://doi.org/10.3390/sym13060935
APA StyleElaskar, S., del Río, E., & Lorenzón, D. (2021). Calculation of the Statistical Properties in Intermittency Using the Natural Invariant Density. Symmetry, 13(6), 935. https://doi.org/10.3390/sym13060935