Analysis of the Internal Structure of Hadrons Using Direct Photon Production
Abstract
:1. Introduction and Motivation
2. Implementation of the Computation
2.1. Isolation and Direct Photon Contribution
- 1.
- Identify each photonic signal in the final state, and draw a cone of radius around it.
- 2.
- If there are not QCD partons inside the cone, the photon is isolated.
- 3.
- If there are QCD partons inside the cone, we calculate their distance to the photon, , following Equation (3) and then we define the total transverse hadronic energy for a cone of radius r as
- 4.
- Define an arbitrary smooth function that satisfies for .
- 5.
- If for every (i.e., for any point inside the fixed cone), then the photon is isolated.
2.2. Higher-Order Corrections
3. Numerical Simulations
- Pion and photon rapidities are restricted to .
- The photon transverse momentum fulfills .
- Pion transverse momentum must be larger than 2 GeV.
- We consider full azimuthal coverage, i.e., no restriction on , as a simplification of the real detectors.
Phenomenology and Results
- 1.
- : NNPDF3.1 and DSS2014 (default up-to-date simulation)
- 2.
- : NNPDF3.1 and DSS2007 (effects in the hadronization)
- 3.
- : MSTW2008 and DSS2014 (effects in the parton distributions)
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NNPDF Collaboration; Khalek, R.A.; Ball, R.D.; Carrazza, S.; Forte, S.; Giani, T.; Kassabov, Z.; Nocera, E.R.; Pearson, R.L.; Wilson, M.; et al. A first determination of parton distributions with theoretical uncertainties. Eur. Phys. J. C 2019, 79, 838. [Google Scholar] [CrossRef] [Green Version]
- de Florian, D.; Sassot, R.; Stratmann, M.; Vogelsang, W. Global Analysis of Helicity Parton Densities and Their Uncertainties. Phys. Rev. Lett. 2008, 101, 072001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Florian, D.; Sassot, R.; Stratmann, M.; Vogelsang, W. Extraction of Spin-Dependent Parton Densities and Their Uncertainties. Phys. Rev. D 2009, 80, 034030. [Google Scholar] [CrossRef] [Green Version]
- Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231–252. [Google Scholar] [CrossRef]
- Bertoldi, G.; Bigazzi, F.; Cotrone, A.L.; Edelstein, J.D. Holography and unquenched quark-gluon plasmas. Phys. Rev. D 2007, 76, 065007. [Google Scholar] [CrossRef] [Green Version]
- de Florian, D.; Sborlini, G.F.R. Hadron plus photon production in polarized hadronic collisions at next-to-leading order accuracy. Phys. Rev. D 2011, 83, 074022. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-N.; Huang, Z.; Sarcevic, I. Jet quenching in the opposite direction of a tagged photon in high-energy heavy ion collisions. Phys. Rev. Lett. 1996, 77, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Arleo, F.; Aurenche, P.; Belghobsi, Z.; Guillet, J.-P. Photon tagged correlations in heavy ion collisions. JHEP 2004, 11, 009. [Google Scholar] [CrossRef]
- Arleo, F. Hard pion and prompt photon at RHIC, from single to double inclusive production. JHEP 2006, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Owens, J.F.; Wang, E.; Wang, X.-N. Tomography of high-energy nuclear collisions with photon-hadron correlations. Phys. Rev. Lett. 2009, 103, 032302. [Google Scholar] [CrossRef] [Green Version]
- Belghobsi, Z.; Fontannaz, M.; Guillet, J.P.; Heinrich, G.; Pilon, E.; Werlen, M. Photon—Jet Correlations and Constraints on Fragmentation Functions. Phys. Rev. D 2009, 79, 114024. [Google Scholar] [CrossRef] [Green Version]
- Collins, J.C.; Soper, D.E.; Sterman, G.F. Factorization of Hard Processes in QCD. Adv. Ser. Direct. High Energy Phys. 1989, 5, 1–91. [Google Scholar]
- Catani, S.; de Florian, D.; Rodrigo, G. Space-like (versus time-like) collinear limits in QCD: Is factorization violated. JHEP 2012, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Forshaw, J.R.; Seymour, M.H.; Siodmok, A. On the Breaking of Collinear Factorization in QCD. JHEP 2012, 11, 66. [Google Scholar] [CrossRef] [Green Version]
- Frixione, S. Isolated photons in perturbative QCD. Phys. Lett. B 1998, 429, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Cieri, L. Diphoton isolation studies. Nucl. Part. Phys. Proc. 2016, 273–275, 2033–2039. [Google Scholar] [CrossRef] [Green Version]
- Catani, S.; Cieri, L.; de Florian, D.; Ferrera, G.; Grazzini, M. Diphoton production at the LHC: A QCD study up to NNLO. JHEP 2018, 4, 142. [Google Scholar] [CrossRef] [Green Version]
- Frixione, S.; Kunszt, Z.; Signer, A. Three jet cross-sections to next-to-leading order. Nucl. Phys. B 1996, 467, 399–442. [Google Scholar] [CrossRef] [Green Version]
- Buckley, A.; Ferrando, J.; Lloyd, S.; Nordstrom, K.; Page, B.; Rufenacht, M.; Schonherr, M.; Watt, G. LHAPDF6: Parton density access in the LHC precision era. Eur. Phys. J. C 2015, 75, 132. [Google Scholar] [CrossRef] [Green Version]
- de Florian, D.; Sassot, R.; Epele, M.; Hernández-Pinto, R.J.; Stratmann, M. Parton-to-Pion Fragmentation Reloaded. Phys. Rev. D 2015, 91, 014035. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.D.; Stirling, W.J.; Thorne, R.S.; Watt, G. Parton distributions for the LHC. Eur. Phys. J. C 2009, 63, 189–285. [Google Scholar] [CrossRef] [Green Version]
- de Florian, D.; Sassot, R.; Stratmann, M. Global analysis of fragmentation functions for protons and charged hadrons. Phys. Rev. D 2007, 76, 074033. [Google Scholar] [CrossRef] [Green Version]
- Manohar, A.V.; Nason, P.; Salam, G.P.; Zanderighi, G. The Photon Content of the Proton. JHEP 2017, 12, 46. [Google Scholar] [CrossRef] [Green Version]
- NNPDF Collaboration; Bertone, V.; Carrazza, S.; Hartland, N.P.; Rojo, J. Illuminating the photon content of the proton within a global PDF analysis. SciPost Phys. 2018, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Buonocore, L.; Nason, P.; Tramontano, F.; Zanderighi, G. Leptons in the proton. JHEP 2020, 8, 19. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rentería-Estrada, D.F.; Hernández-Pinto, R.J.; Sborlini, G. Analysis of the Internal Structure of Hadrons Using Direct Photon Production. Symmetry 2021, 13, 942. https://doi.org/10.3390/sym13060942
Rentería-Estrada DF, Hernández-Pinto RJ, Sborlini G. Analysis of the Internal Structure of Hadrons Using Direct Photon Production. Symmetry. 2021; 13(6):942. https://doi.org/10.3390/sym13060942
Chicago/Turabian StyleRentería-Estrada, David Francisco, Roger José Hernández-Pinto, and German Sborlini. 2021. "Analysis of the Internal Structure of Hadrons Using Direct Photon Production" Symmetry 13, no. 6: 942. https://doi.org/10.3390/sym13060942
APA StyleRentería-Estrada, D. F., Hernández-Pinto, R. J., & Sborlini, G. (2021). Analysis of the Internal Structure of Hadrons Using Direct Photon Production. Symmetry, 13(6), 942. https://doi.org/10.3390/sym13060942