Convergence of Higher Order Jarratt-Type Schemes for Nonlinear Equations from Applied Sciences
Abstract
:1. Introduction
- (a)
- The convergence order was established by utilizing the Taylor series expansion requiring higher order derivatives (not appearing on the schemes);
- (b)
- Lack of computable estimates on distances ;
- (c)
- Results related to the uniqueness of the solutions are not given;
- (d)
- We do not know in advance how many iterates are needed to achieve a desired error tolerance given in advance;
- (e)
- Earlier studies have been made only on the multidimensional Euclidean space.
2. Analysis in the Sense of Local Convergence
- (A1)
- For eachSet .
- (A2)
- For each
- (A3)
- and
- (A4)
- There exists satisfying:Set .
- (a)
- By and the estimation:
- (b)
- (c)
- If and then was shown in [9,10] to be the convergence radius for Newton’s method. It follows from (7) and the definition of that the convergence radius ρ of the method (2) cannot be larger than the convergence radius of the second order Newton’s method. As already noted in [9,10], is at its smallest as large as the convergence ball given by Rheinboldt [28]:In particular, for (where is the constant on ), we have that:Therefore our convergence ball is at most three times larger than Rheinboldt’s. The same value for is given by Traub [1].
- (d)
- Method (2) is not changing if we use the conditions of Theorem 1 instead of the stronger conditions given in [33]. Moreover, for the error bounds in practice we can use the Computational Order of Convergence (COC) [32]:So, the convergence order is obtained in this way without evaluations higher than the first Fréchet derivative.
3. Numerical Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice- Hall Series in Automatic Computation; American Mathematical Soc.: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Ostrowski, A.M. Solutions of Equations and System of Equations; Academic Press: New York, NY, USA, 1960. [Google Scholar]
- Kung, H.T.; Taub, J.F. Optimal order of one-point and multi-point iteration. J. ACM 1974, 21, 643–651. [Google Scholar] [CrossRef]
- Jarratt, P. Some efficient fourth order multipoint methods for solving equations. Nord. Tidskr. Inf. Behandl. 1969, 9, 119–124. [Google Scholar] [CrossRef]
- Jarratt, P. Some fourth order multipoint iterative methods for solving equations. Math. Comp. 1966, 20, 434–437. [Google Scholar] [CrossRef]
- King, R.F. A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 1973, 10, 876–879. [Google Scholar] [CrossRef]
- Kapania, R.K. A pseudo-spectral solution of 2-parameter Bratu’s equation. Comput. Mech. 1990, 6, 55–63. [Google Scholar] [CrossRef]
- Amat, S.; Argyros, I.K.; Busquier, S.; Magreñán, A.A. Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions. Numer. Algorith. 2017, 74, 371–391. [Google Scholar] [CrossRef]
- Argyros, I.K. Convergence and Application of Newton-Type Iterations; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Argyros, I.K.; Hilout, S. Numerical Methods in Nonlinear Analysis; World Scientific Publ. Comp.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Awawdeh, F. On new iterative method for solving systems of nonlinear equations. Numer. Algor. 2010, 54, 395–409. [Google Scholar] [CrossRef]
- Bahl, A.; Cordero, A.; Sharma, R.; Torregrosa, J.R. A novel bi-parametric sixth order iterative scheme for solving nonlinear systems and its dynamics. Appl. Math. Comput. 2019, 357, 147–166. [Google Scholar] [CrossRef]
- Berardi, M.; Difonzo, F.; Vurro, M.; Lopez, L. The 1D Richards’ equation in two layered soils: A Filippov approach to treat discontinuities. Adv. Water Resour. 2018, 115, 264–272. [Google Scholar] [CrossRef]
- Casulli, V.; Zanolli, P. A Nested Newton-Type Algorithm for Finite Volume Methods Solving Richards’ Equation in Mixed Form. SIAM J. Sci. Comput. 2010, 32, 2255–2273. [Google Scholar] [CrossRef]
- Chicharro, F.I.; Cordero, A.; Torregrosa, J.R. Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. 2013, 2013, 506–519. [Google Scholar] [CrossRef]
- Cordero, A.; Garcéa-Maimó, J.; Torregrosa, J.R.; Vassileva, M.P.; Vindel, P. Chaos in King’s iterative family. Appl. Math. Lett. 2013, 26, 842–848. [Google Scholar] [CrossRef] [Green Version]
- Cordero, A.; Garcéa-Maimó, J.; Torregrosa, J.R.; Vassileva, M.P. Multidimensional stability analysis of a family of biparametric iterative methods. J. Math. Chem. 2017, 55, 1461–1480. [Google Scholar] [CrossRef] [Green Version]
- Cordero, A.; Gómez, E.; Torregrosa, J.R. Efficient high-order iterative methods for solving nonlinear systems and their application on heat conduction problems. Complexity 2017, 2017, 6457532. [Google Scholar] [CrossRef] [Green Version]
- Cordero, A.; Gutiérrez, J.M.; Magreñán, A.A.; Torregrosa, J.R. Stability analysis of a parametric family of iterative methods for solving nonlinear models. Appl. Math. Comput. 2016, 285, 26–40. [Google Scholar] [CrossRef]
- Cordero, A.; Soleymani, F.; Torregrosa, J.R. Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension. Appl. Math. Comput. 2014, 244, 398–412. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 2007, 190, 686–698. [Google Scholar] [CrossRef]
- Geum, Y.H.; Kim, Y.I.; Neta, B. A sixth-order family of three-point modified newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Appl. Math. Comput. 2016, 283, 120–140. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.M.; Hernández, M.A.; Romero, N. Dynamics of a new family of iterative processes for quadratic polynomials. J. Comput. Appl. Math. 2010, 233, 2688–2695. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.M.; Plaza, S.; Romero, N. Dynamics of a fifth-order iterative method. Int. J. Comput. Math. 2012, 89, 822–835. [Google Scholar] [CrossRef]
- Illiano, D.; Pop, L.S.; Radu, F.A. Iterative schemes for surfactant transport in porous media. Comput. Geosci. 2021, 25, 805–822. [Google Scholar] [CrossRef]
- Magreñán, A.A. Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 2014, 233, 29–38. [Google Scholar]
- Petković, M.S.; Neta, B.; Petković, L.D.; Dz̆unić, J. Multipoint Methods for Solving Nonlinear Equations; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Rheinboldt, W.C. An adaptive continuation process for solving systems of nonlinear equations. Pol. Acad. Sci. Banach Ctr. Publ. 1978, 3, 129–142. [Google Scholar] [CrossRef]
- Sharma, J.R.; Arora, H. Improved Newton-like methods for solving systems of nonlinear equations. SeMA J. 2017, 74, 147–163. [Google Scholar] [CrossRef]
- Simpson, R.B. A method for the numerical determination of bifurcation states of nonlinear systems of equations. SIAM J. Numer. Anal. 1975, 12, 439–451. [Google Scholar] [CrossRef]
- Tsoulos, I.G.; Stavrakoudis, A. On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods. Nonlinear Anal. Real World Appl. 2010, 11, 2465–2471. [Google Scholar] [CrossRef]
- Weerakoon, S.; Fernando, T.G.I. A variant of Newton’s method with accelerated third order convergence. Appl. Math. Lett. 2000, 13, 87–93. [Google Scholar] [CrossRef]
- Zhanlav, T.; Otgondorj, K. Higher order Jarratt-like iterations for solving system of nonlinear equations. Appl. Math. Comput. 2021, 395, 125849. [Google Scholar] [CrossRef]
Methods | |||||||
---|---|---|---|---|---|---|---|
(31) | 1 | 0 | 0 | 0.00687 | 0.00316 | 0.00224 | 0.00224 |
0 | 1 | 0.00229 | 0.00201 | 0.00136 | 0.00136 | ||
1 | 1 | 0.00687 | 0.0100 | 0.000164 | 0.000164 | ||
1 | 0.00229 | 0.00976 | 0.0000732 | 0.0000732 | |||
(32) | 1 | - | 0.00687 | 0.00461 | 0.00322 | 0.00322 | |
- | 0.00229 | 0.00362 | 0.00244 | 0.00229 |
Methods | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
(31) | 1 | 0 | 0 | 6.667 | 3.066 | 2.172 | 2.172 | 4 | 4.9972 | |
0 | 1 | 2.222 | 1.949 | 1.321 | 1.321 | 3 | 4.9975 | |||
1 | 1 | 6.667 | 9.742 | 0.159 | 0.159 | 3 | 4.9990 | |||
1 | 2.222 | 9.463 | 0.0710 | 0.0710 | 3 | 5.0000 | ||||
(32) | 1 | - | 6.667 | 4.473 | 3.120 | 3.120 | 3 | 6.0000 | ||
- | 2.223 | 3.517 | 2.363 | 2.223 | 3 | 6.0000 |
i | ||
---|---|---|
0 | ||
1 | ||
2 | ||
3 |
Methods | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
(31) | 1 | 0 | 0 | 0.0833 | 0.0383 | 0.0271 | 0.0271 | 4 | 5.0313 | |
0 | 1 | 0.0278 | 0.0244 | 0.0165 | 0.0165 | 4 | 5.0322 | |||
1 | 1 | 0.0833 | 0.122 | 0.00198 | 0.00198 | 4 | 4.9769 | |||
1 | 0.0278 | 0.118 | 0.000888 | 0.000888 | 3 | 5.0395 | ||||
(32) | 1 | - | 0.0833 | 0.0559 | 0.0390 | 0.0390 | 4 | 6.0001 | ||
- | 0.0278 | 0.0440 | 0.0295 | 0.0278 | 4 | 6.0249 |
Methods | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
(31) | 1 | 0 | 0 | 0.0952 | 0.0438 | 0.0310 | 0.0310 | 2 | 4.9978 | |
0 | 1 | 0.0317 | 0.0278 | 0.0189 | 0.0189 | 2 | 4.9913 | |||
1 | 1 | 0.0952 | 0.139 | 0.00226 | 0.00226 | 2 | 4.9937 | |||
1 | 0.0317 | 0.135 | 0.0010 | 0.0010 | 2 | 4.9893 | ||||
(32) | 1 | - | 0.0952 | 0.0639 | 0.0446 | 0.0446 | 2 | 6.0055 | ||
- | 0.0317 | 0.0502 | 0.0338 | 0.0317 | 2 | 5.9853 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behl, R.; Argyros, I.K.; Mallawi, F.O.; Argyros, C.I. Convergence of Higher Order Jarratt-Type Schemes for Nonlinear Equations from Applied Sciences. Symmetry 2021, 13, 1162. https://doi.org/10.3390/sym13071162
Behl R, Argyros IK, Mallawi FO, Argyros CI. Convergence of Higher Order Jarratt-Type Schemes for Nonlinear Equations from Applied Sciences. Symmetry. 2021; 13(7):1162. https://doi.org/10.3390/sym13071162
Chicago/Turabian StyleBehl, Ramandeep, Ioannis K. Argyros, Fouad Othman Mallawi, and Christopher I. Argyros. 2021. "Convergence of Higher Order Jarratt-Type Schemes for Nonlinear Equations from Applied Sciences" Symmetry 13, no. 7: 1162. https://doi.org/10.3390/sym13071162
APA StyleBehl, R., Argyros, I. K., Mallawi, F. O., & Argyros, C. I. (2021). Convergence of Higher Order Jarratt-Type Schemes for Nonlinear Equations from Applied Sciences. Symmetry, 13(7), 1162. https://doi.org/10.3390/sym13071162