Fault Diagnosis of Main Pump in Converter Station Based on Deep Neural Network
Abstract
:1. Introduction
2. Related Work
2.1. One-Dimensional Convolutional Neural Network (1DCNN)
2.2. LSTM
3. The Proposed Model
3.1. The Framework of Proposed Model
3.2. Model Setup
4. Data
4.1. Data Description
4.2. Data Processing
5. Results and Discussion
5.1. Results Analysis
5.2. Model Evaluation
5.3. Algorithm Comparison
5.4. Network Visualization
5.5. Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holweg, J.; Lips, H.P.; Tu, B.Q.; Uder, M.; Peng, B.; Zhang, Y. Modern HVDC thyristor valves for China’s electric power system. In Proceedings of the Proceedings. International Conference on Power System Technology, Kunming, China, 13–17 October 2002; Volume 521, pp. 520–527. [Google Scholar]
- Wen, Y.L.; Leng, M.Q.; Zhang, E.L.; Zhang, Z.G.; Chen, J.Y. Hybrid Cooling System for HVDC Convertor Valves. Appl. Mech. Mater. 2014, 3391, 588–595. [Google Scholar] [CrossRef]
- Qian, Y.H.; Zhou, Y.Y.; Xu, C.W. Research on the Formation and Preventive Measure of Scale in the Cooling System of HVDC Converter Valve. Adv. Mater. Res. 2012, 354, 1157–1160. [Google Scholar] [CrossRef]
- ShaoHua, Y.; Qibin, T.; Maozhong, W.; Luxiang, Z. Cooling System Circuit Analysis of ±800 kV DC Power Transmission Converter Valve. In Proceedings of the 2015 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering, Hangzhou, China, 28–29 September 2015; pp. 1124–1127. [Google Scholar]
- Wu, A.; Guan, S.; Geng, M.; Cui, P. Fault analysis and optimized improvement for main pump of HVDC Converter Stations valve cooling system. In Proceedings of the 2020 4th International Conference on HVDC (HVDC), Xi’an, China, 6–9 November 2020. [Google Scholar]
- Kumar, A.; Kumar, R. Time-frequency analysis and support vector machine in automatic detection of defect from vibration signal of centrifugal pump. Measurement 2017, 108, 119–133. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Javidan, M. Vibration-based classification of centrifugal pumps using support vector machine and discrete wavelet transform. J. Vibroeng. 2017, 19, 2586–2597. [Google Scholar] [CrossRef]
- Hui, S.; Yuan, S.; Yin, L. Cyclic Spectral Analysis of Vibration Signals for Centrifugal Pump Fault Characterization. IEEE Sens. J. 2018, 18, 2925–2933. [Google Scholar]
- Rapur, J.S.; Tiwari, R. Automation of multi-fault diagnosing of centrifugal pumps using multi-class support vector machine with vibration and motor current signals in frequency domain. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 278. [Google Scholar] [CrossRef]
- Al-Tubi, M.; Bevan, G.P.; Wallace, P.A.; Harrison, D.K.; Ramachandran, K.P. Fault diagnosis of a centrifugal pump using MLP-GABP and SVM with CWT. J. Eng. Sci. Technol. 2019, 22, 854–861. [Google Scholar]
- Rapur, J.S.; Tiwari, R. Experimental fault diagnosis for known and unseen operating conditions of centrifugal pumps using MSVM and WPT based analyses. Measurement 2019, 147, 106809. [Google Scholar] [CrossRef]
- Ahmad, Z.; Prosvirin, A.E.; Kim, J.; Kim, J. Multistage Centrifugal Pump Fault Diagnosis by Selecting Fault Characteristic Modes of Vibration and Using Pearson Linear Discriminant Analysis. IEEE Access 2020, 8, 223030–223040. [Google Scholar] [CrossRef]
- Ahmad, Z.; Rai, A.; Ma Liuk, A.S.; Kim, J.M. Discriminant Feature Extraction for Centrifugal Pump Fault Diagnosis. IEEE Access 2020, 8, 165512. [Google Scholar] [CrossRef]
- Wang, L.H.; Zhao, X.P.; Wu, J.X.; Xie, Y.Y.; Zhang, Y.H. Motor Fault Diagnosis Based on Short-time Fourier Transform and Convolutional Neural Network. Chin. J. Mech. Eng. 2017, 30, 1357–1368. [Google Scholar] [CrossRef]
- Guo, X.; Chen, L.; Shen, C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement 2016, 93, 490–502. [Google Scholar] [CrossRef]
- Wei, Z.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2017, 100, 439–453. [Google Scholar]
- Kumar, A.; Gandhi, C.P.; Zhou, Y.; Kumar, R.; Xiang, J. Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images. Appl. Acoust. 2020, 167, 107399. [Google Scholar] [CrossRef]
- Talebi, N.; Ali Sadrnia, M.; Darabi, A. Robust fault detection of wind energy conversion systems based on dynamic neural networks. Comput. Intell. Neurosci. 2014, 2014, 580972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Przystałka, P.; Moczulski, W. Methodology of neural modelling in fault detection with the use of chaos engineering. Eng. Appl. Artif. Intell. 2015, 41, 25–40. [Google Scholar] [CrossRef]
- Mrugalski, M.; Luzar, M.; Pazera, M.; Witczak, M.; Aubrun, C. Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system. ISA Trans. 2016, 61, 318–328. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef] [Green Version]
- Ioffffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Yao, Z.; Yu, Y.; Yao, J. Artificial neural network–based internal leakage fault detection for hydraulic actuators: An experimental investigation. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2017, 232, 369–382. [Google Scholar] [CrossRef]
- Cheemala, V.; Asokan, A.N.; Preetha, P. Transformer Incipient Fault Diagnosis using Machine Learning Classifiers. In Proceedings of the 2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Chennai, India, 21–23 November 2019. [Google Scholar]
- Jin, G.; Zhu, T.; Akram, M.W.; Jin, Y.; Zhu, C. An Adaptive Anti-Noise Neural Network for Bearing Fault Diagnosis under Noise and Varying Load Conditions. IEEE Access 2020, 8, 74793–74807. [Google Scholar] [CrossRef]
- Chen, R.; Zhu, J.; Hu, X.; Wu, H.; Xu, X.; Han, X. Fault diagnosis method of rolling bearing based on multiple classifier ensemble of the weighted and balanced distribution adaptation under limited sample imbalance. ISA Trans. 2020, 114, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Dey, R.; Salemt, F.M. Gate-variants of Gated Recurrent Unit (GRU) neural networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017. [Google Scholar]
- Yi, B.; Yang, Y.; Huang, Z.; Shen, F.; Shen, H.T. Bidirectional Long-Short Term Memory for Video Description. ACM 2016, 436–440. [Google Scholar] [CrossRef] [Green Version]
- Xie, X. Opinion Expression Detection via Deep Bidirectional C-GRUs. In Proceedings of the International Workshop on Database & Expert Systems Applications, Lyon, France, 28–31 August 2017. [Google Scholar]
Name | Filters | Kernel Size/Stride | Units | Input Size | Output Size |
---|---|---|---|---|---|
Input | 1024 × 3 | ||||
Conv_1 | 50 | 36/2 | 1024 × 3 | 495 × 50 | |
Conv_2 | 30 | 5/2 | 495 × 50 | 246 × 30 | |
AveragePooling_1 | 2/2 | 246 × 30 | 123 × 30 | ||
Conv_3 | 50 | 7/1 | 1024 × 3 | 1018 × 50 | |
Conv_4 | 40 | 7/1 | 1018 × 50 | 1012 × 40 | |
Maxpooling_1 | 2/2 | 1012 × 40 | 506 × 40 | ||
Conv_5 | 30 | 7/1 | 506 × 40 | 500 × 30 | |
Conv_6 | 30 | 7/2 | 500 × 30 | 247 × 30 | |
Averagepooling_2 | 2/2 | 247 × 30 | 123 × 30 | ||
Batch_normalization_1 | 123 × 30 | 123 × 30 | |||
Lstm_1 | 60 | 123 × 30 | 123 × 60 | ||
Lstm_2 | 30 | 123 × 60 | 1 × 30 | ||
Dense | 5 | 1 × 30 | 1 × 5 |
Type | Vertical Direction | Horizontal Direction | Axial Direction |
---|---|---|---|
PM | 317,031 | 317,031 | 317,031 |
Normal | 8192 | 8192 | 8192 |
Unbalance | 8192 | 8192 | 8192 |
AM | 317,031 | 317,031 | 317,031 |
Looseness | 8192 | 8192 | 8192 |
Evaluation Index | Length | ||||
---|---|---|---|---|---|
256 | 512 | 1024 | 2048 | 4096 | |
F1-score | 0.925 | 0.942 | 0.987 | 0.925 | 0.881 |
Recall | 0.924 | 0.941 | 0.987 | 0.921 | 0.876 |
Precision | 0.932 | 0.944 | 0.988 | 0.931 | 0.899 |
Accuracy | 0.930 | 0.943 | 0.987 | 0.927 | 0.890 |
Evaluation Index | Module | |||
---|---|---|---|---|
Unidirectional LSTM | Bidirectional LSTM | Unidirectional GRU | Bidirectional GRU | |
F1-score | 0.987 | 0.909 | 0.883 | 0.849 |
Recall | 0.987 | 0.908 | 0.883 | 0.849 |
Precision | 0.988 | 0.970 | 0.890 | 0.951 |
Accuracy | 0.987 | 0.910 | 0.883 | 0.840 |
Type | Evaluation Index | ||
---|---|---|---|
F1 Score | Recall | Precision | |
PM | 1.000 | 1.000 | 1.000 |
Normal | 1.000 | 1.000 | 1.000 |
Unbalance | 0.966 | 0.933 | 1.000 |
AM | 1.000 | 1.000 | 1.000 |
Looseness | 0.969 | 1.000 | 0.939 |
Average | 0.987 | 0.987 | 0.988 |
Accuracy | 0.987 |
Method | Evaluation Index | |||
---|---|---|---|---|
F1 Score | Recall | Precision | Accuracy | |
Proposed | 0.987 | 0.987 | 0.988 | 0.987 |
CNN | 0.905 | 0.902 | 0.910 | 0.910 |
WDCNN | 0.842 | 0.845 | 0.887 | 0.853 |
LSTM | 0.769 | 0.766 | 0.854 | 0.817 |
BiLSTM | 0.858 | 0.855 | 0.897 | 0.870 |
GRU | 0.812 | 0.809 | 0.887 | 0.817 |
BiGRU | 0.954 | 0.953 | 0.956 | 0.953 |
K-NN | 0.336 | 0.438 | 0.491 | 0.457 |
Random Forest | 0.642 | 0.650 | 0.562 | 0.660 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Cheng, G.; Han, X.; Liang, D.; Wang, X. Fault Diagnosis of Main Pump in Converter Station Based on Deep Neural Network. Symmetry 2021, 13, 1284. https://doi.org/10.3390/sym13071284
Zhao Q, Cheng G, Han X, Liang D, Wang X. Fault Diagnosis of Main Pump in Converter Station Based on Deep Neural Network. Symmetry. 2021; 13(7):1284. https://doi.org/10.3390/sym13071284
Chicago/Turabian StyleZhao, Qingsheng, Gong Cheng, Xiaoqing Han, Dingkang Liang, and Xuping Wang. 2021. "Fault Diagnosis of Main Pump in Converter Station Based on Deep Neural Network" Symmetry 13, no. 7: 1284. https://doi.org/10.3390/sym13071284
APA StyleZhao, Q., Cheng, G., Han, X., Liang, D., & Wang, X. (2021). Fault Diagnosis of Main Pump in Converter Station Based on Deep Neural Network. Symmetry, 13(7), 1284. https://doi.org/10.3390/sym13071284