Symmetry and Quantum Features in Optical Vortices
Abstract
:1. Introduction
2. Electrodynamics and Quantum Features of Structured Light
2.1. Field Operator Symmetries
2.2. Quantised Fields and Mode Expansions
2.3. Linear Momentum Density
2.4. Quantum Uncertainty
3. Angular Momentum Quantization
3.1. Quantum Operators
3.2. Conservation of Angular Momentum
4. Spatial Symmetry Aspects of Optical Vortices
4.1. Polarisation States, Chirality, and Helicity
4.2. Cylindrical and Rotational Symmetry
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Beijersbergen, M.W.; Allen, L.; van der Veen, H.E.L.O.; Woerdman, J.P. Astigmatic laser mode converters and transfer of orbital angular-momentum. Opt. Commun. 1993, 96, 123–132. [Google Scholar] [CrossRef]
- Van Enk, S.J.; Nienhuis, G. Spin and orbital angular momentum of photons. Europhys. Lett. 1994, 25, 497–501. [Google Scholar] [CrossRef]
- Arlt, J.; Dholakia, K.; Allen, L.; Padgett, M.J. The production of multiringed Laguerre-Gaussian modes by computer-generated holograms. J. Mod. Opt. 1998, 45, 1231–1237. [Google Scholar] [CrossRef]
- Berkhout, G.C.G.; Lavery, M.P.J.; Courtial, J.; Beijersbergen, M.W.; Padgett, M.J. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 2010, 105, 153601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galvez, E.J.; Coyle, L.E.; Johnson, E.; Reschovsky, B.J. Interferometric measurement of the helical mode of a single photon. New J. Phys. 2011, 13, 053017. [Google Scholar] [CrossRef]
- O’Sullivan, M.N.; Mirhosseini, M.; Malik, M.; Boyd, R.W. Near-perfect sorting of orbital angular momentum and angular position states of light. Opt. Express 2012, 20, 24444–24449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santamato, E. Photon orbital angular momentum: Problems and perspectives. Fortschr. Phys. 2004, 52, 1141–1153. [Google Scholar] [CrossRef]
- Andrews, D.L. Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces; Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2008. [Google Scholar]
- Torres, J.P.; Torner, L. Twisted Photons: Applications of Light with Orbital Angular Momentum; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Bliokh, K.Y.; Nori, F. Spatiotemporal vortex beams and angular momentum. Phys. Rev. A 2012, 86, 033824. [Google Scholar] [CrossRef] [Green Version]
- Rubinsztein-Dunlop, H.; Forbes, A.; Berry, M.V.; Dennis, M.R.; Andrews, D.L.; Mansuripur, M.; Denz, C.; Alpmann, C.; Banzer, P.; Bauer, T.; et al. Roadmap on structured light. J. Opt. 2017, 19, 013001. [Google Scholar] [CrossRef]
- Babiker, M.; Power, W.L.; Allen, L. Light-induced torque on moving atoms. Phys. Rev. Lett. 1994, 73, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Power, W.L.; Allen, L.; Babiker, M.; Lembessis, V.E. Atomic motion in light-beams possessing orbital angular-momentum. Phys. Rev. A 1995, 52, 479–488. [Google Scholar] [CrossRef]
- Simpson, N.B.; Allen, L.; Padgett, M.J. Optical tweezers and optical spanners with Laguerre-Gaussian modes. J. Mod. Opt. 1996, 43, 2485–2491. [Google Scholar] [CrossRef]
- Ashkin, A. Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA 1997, 94, 4853–4860. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.H.; Maragò, O.M.; Volpe, G. Optical Tweezers: Principles and Applications; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Wang, J.; Yang, J.-Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Vallone, G.; D’Ambrosio, V.; Sponselli, A.; Slussarenko, S.; Marrucci, L.; Sciarrino, F.; Villoresi, P. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 2014, 113, 060503. [Google Scholar] [CrossRef] [Green Version]
- Gibson, G.; Courtial, J.; Padgett, M.; Vasnetsov, M.; Pas’ko, V.; Barnett, S.; Franke-Arnold, S. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 2004, 12, 5448–5456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirhosseini, M.; Magaña-Loaiza, O.S.; O’Sullivan, M.N.; Rodenburg, B.; Malik, M.; Lavery, M.P.J.; Padgett, M.J.; Gauthier, D.J.; Boyd, R.W. High-dimensional quantum cryptography with twisted light. New J. Phys. 2015, 17, 033033. [Google Scholar] [CrossRef]
- Erhard, M.; Fickler, R.; Krenn, M.; Zeilinger, A. Twisted photons: New quantum perspectives in high dimensions. Light Sci. Appl. 2018, 7, 17146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Tu, J.J.; Birman, J.L. Raman scattering using vortex light. J. Phys. Chem. Solids 2015, 77, 117–121. [Google Scholar] [CrossRef]
- Forbes, K.A. Raman optical activity using twisted photons. Phys. Rev. Lett. 2019, 122, 103201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forbes, K.A.; Andrews, D.L. Orbital angular momentum of twisted light: Chirality and optical activity. J. Phys. Photonics 2021, 3, 022007. [Google Scholar] [CrossRef]
- Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1995. [Google Scholar]
- van Enk, S.J.; Nienhuis, G. Commutation rules and eigenvalues of spin and orbital angular-momentum of radiation-fields. J. Mod. Opt. 1994, 41, 963–977. [Google Scholar] [CrossRef]
- Andrews, D.L.; Dávila Romero, L.C.; Babiker, M. On optical vortex interactions with chiral matter. Opt. Commun. 2004, 237, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Araoka, F.; Verbiest, T.; Clays, K.; Persoons, A. Interactions of twisted light with chiral molecules: An experimental investigation. Phys. Rev. A 2005, 71, 055401. [Google Scholar] [CrossRef]
- Van Veenendaal, M.; McNulty, I. Prediction of strong dichroism induced by x rays carrying orbital momentum. Phys. Rev. Lett. 2007, 98, 157401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löffler, W.; Broer, D.; Woerdman, J. Circular dichroism of cholesteric polymers and the orbital angular momentum of light. Phys. Rev. A 2011, 83, 065801. [Google Scholar] [CrossRef] [Green Version]
- Toyoda, K.; Miyamoto, K.; Aoki, N.; Morita, R.; Omatsu, T. Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett. 2012, 12, 3645–3649. [Google Scholar] [CrossRef] [PubMed]
- Lowney, J.; Roger, T.; Faccio, D.; Wright, E.M. Dichroism for orbital angular momentum using parametric amplification. Phys. Rev. A 2014, 90, 053828. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Wang, R.; Zhang, X. Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light. Sci. Rep. 2015, 5, 18003. [Google Scholar] [CrossRef] [Green Version]
- Forbes, K.A.; Andrews, D.L. Optical orbital angular momentum: Twisted light and chirality. Opt. Lett. 2018, 43, 435–438. [Google Scholar] [CrossRef]
- Samlan, C.T.; Suna, R.R.; Naik, D.N.; Viswanathan, N.K. Spin-orbit beams for optical chirality measurement. Appl. Phys. Lett. 2018, 112, 031101. [Google Scholar] [CrossRef] [Green Version]
- Alpeggiani, F.; Bliokh, K.Y.; Nori, F.; Kuipers, L. Electromagnetic helicity in complex media. Phys. Rev. Lett. 2018, 120, 243605. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, P.; De Leon, I.; Höflich, K.; Leuchs, G.; Banzer, P. Interaction of light carrying orbital angular momentum with a chiral dipolar scatterer. Optica 2019, 6, 961–965. [Google Scholar] [CrossRef]
- Babiker, M.; Andrews, D.L.; Lembessis, V.E. Atoms in complex twisted light. J. Opt. 2019, 21, 013001. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Bialynicka-Birula, Z. Why photons cannot be sharply localized. Phys. Rev. A 2009, 79, 032112. [Google Scholar] [CrossRef]
- Franke-Arnold, S.; Barnett, S.M.; Yao, E.; Leach, J.; Courtial, J.; Padgett, M. Uncertainty principle for angular position and angular momentum. New J. Phys. 2004, 6, 103. [Google Scholar] [CrossRef] [Green Version]
- Andrews, D.L.; Forbes, K.A. Quantum features in the orthogonality of optical modes for structured and plane-wave light. Opt. Lett. 2018, 43, 3249–3252. [Google Scholar] [CrossRef]
- Berry, M.; Dennis, M. Quantum cores of optical phase singularities. J. Opt. A Pure Appl. Opt. 2004, 6, S178. [Google Scholar] [CrossRef]
- Barnett, S.M. On the quantum core of an optical vortex. J. Mod. Opt. 2008, 55, 2279–2292. [Google Scholar] [CrossRef]
- Goldberg, A.Z.; de la Hoz, P.; Björk, G.; Klimov, A.B.; Grassl, M.; Leuchs, G.; Sánchez-Soto, L.L. Quantum concepts in optical polarization. Adv. Opt. Photon. 2021, 13, 1–73. [Google Scholar] [CrossRef]
- Andrews, D.; Davila Romero, L.; Babiker, M. Twisted laser beams and their optical interactions with chiral matter. In Trends in Chemical Physics Research; Linke, A.N., Ed.; Nova Science Pub Inc.: Hauppauge, NY, USA, 2006; pp. 155–176. [Google Scholar]
- Greenberg, O. Why is CPT Fundamental? Found. Phys. 2006, 36, 1535–1553. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, A.D.; Tsankov, T.D. CPT invariance in classical electrodynamics. Eur. J. Phys. 2017, 38, 065205. [Google Scholar] [CrossRef] [Green Version]
- Lehnert, R. CPT symmetry and its violation. Symmetry 2016, 8, 114. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M. Introduction to PT-symmetric quantum theory. Contemp. Phys. 2005, 46, 277–292. [Google Scholar] [CrossRef] [Green Version]
- Peřina, J., Jr.; Lukš, A.; Kalaga, J.K.; Leoński, W.; Miranowicz, A. Nonclassical light at exceptional points of a quantum PT-symmetric two-mode system. Phys. Rev. A 2019, 100, 053820. [Google Scholar] [CrossRef] [Green Version]
- Arkhipov, I.I.; Miranowicz, A.; Minganti, F.; Nori, F. Liouvillian exceptional points of any order in dissipative linear bosonic systems: Coherence functions and switching between and anti- symmetries. Phys. Rev. A 2020, 102, 033715. [Google Scholar] [CrossRef]
- Downing, C.A.; Zueco, D.; Martin-Moreno, L. Chiral current circulation and PT symmetry in a trimer of oscillators. ACS Photonics 2020, 7, 5401–5414. [Google Scholar] [CrossRef]
- Ding, L.; Shi, K.; Zhang, Q.; Shen, D.; Zhang, X.; Zhang, W. Experimental determination of P T-Symmetric exceptional points in a single trapped ion. Phys. Rev. Lett. 2021, 126, 083604. [Google Scholar] [CrossRef]
- Andrews, D.L. Quantum formulation for nanoscale optical and material chirality: Symmetry issues, space and time parity, and observables. J. Opt. 2018, 20, 033003. [Google Scholar] [CrossRef]
- Andrews, D.L. Symmetries, conserved properties, tensor representations, and irreducible forms in molecular quantum electrodynamics. Symmetry 2018, 10, 298. [Google Scholar] [CrossRef] [Green Version]
- Power, E.A. Introductory Quantum Electrodynamics; American Elsevier Pub. Co.: New York, NY, USA, 1965. [Google Scholar]
- Barron, L.D. Molecular Light Scattering and Optical Activity; Cambridge University Press: Cambridge, UK, 2004; Volume 2. [Google Scholar]
- Coles, M.M.; Andrews, D.L. Chirality and angular momentum in optical radiation. Phys. Rev. A 2012, 85, 063810. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, D.S.; Leeder, J.M.; Coles, M.M.; Andrews, D.L. Signatures of material and optical chirality: Origins and measures. Chem. Phys. Lett. 2015, 626, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Noether, E. Invariante variationsprobleme. Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen, Math-Phys. Klasse 1918, 235–257. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Cameron, R.P.; Barnett, S.M. Electric–magnetic symmetry and Noether’s theorem. New J. Phys. 2012, 14, 123019. [Google Scholar] [CrossRef]
- Barnett, S.M.; Cameron, R.P.; Yao, A.M. Duplex symmetry and its relation to the conservation of optical helicity. Phys. Rev. A 2012, 86, 013845. [Google Scholar] [CrossRef]
- Lock, M.P.E.; Andrews, D.L.; Jones, G.A. On the nature of long range electronic coupling in a medium: Distance and orientational dependence for chromophores in molecular aggregates. J. Chem. Phys. 2014, 140, 044103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, D.L. Photon-based and classical descriptions in nanophotonics: A review. J. Nanophoton. 2014, 8, 081599. [Google Scholar] [CrossRef] [Green Version]
- Karimi, E.; Boyd, R.W.; de la Hoz, P.; de Guise, H.; Řeháček, J.; Hradil, Z.; Aiello, A.; Leuchs, G.; Sánchez-Soto, L.L. Radial quantum number of Laguerre-Gauss modes. Phys. Rev. A 2014, 89, 063813. [Google Scholar] [CrossRef] [Green Version]
- Simon, D.S. Bessel beams, self-healing, and diffraction-free propagation. In A Guided Tour of Light Beams, 2nd ed.; IOP Publishing: Bristol, UK, 2020; pp. 5-1–5-22. [Google Scholar]
- Dávila Romero, L.C.; Andrews, D.L.; Babiker, M. A quantum electrodynamics framework for the nonlinear optics of twisted beams. J. Opt. B Quantum Semiclass. Opt. 2002, 4, S66–S72. [Google Scholar] [CrossRef]
- Power, E.A.; Thirunamachandran, T. Quantum electrodynamics with nonrelativistic sources. II. Maxwell fields in the vicinity of a molecule. Phys. Rev. A 1983, 28, 2663–2670. [Google Scholar] [CrossRef]
- Craig, D.P.; Thirunamachandran, T. Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions; Dover Publications: Mineola, NY, USA, 1998. [Google Scholar]
- Allen, L.; Padgett, M.J. The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density. Opt. Commun. 2000, 184, 67–71. [Google Scholar] [CrossRef]
- Berry, M.; McDonald, K. Exact and geometrical optics energy trajectories in twisted beams. J. Opt. A Pure Appl. Opt. 2008, 10, 035005. [Google Scholar] [CrossRef]
- Heitler, W. The Quantum Theory of Radiation; Dover Publications: New York, NY, USA, 1984. [Google Scholar]
- Barnett, S.; Pegg, D. Phase in quantum optics. J. Phys. A Math. Gen. 1986, 19, 3849. [Google Scholar] [CrossRef]
- Pegg, D.T.; Vaccaro, J.A.; Barnett, S.M. Quantum-optical phase and canonical conjugation. J. Mod. Opt. 1990, 37, 1703–1710. [Google Scholar] [CrossRef]
- Barnett, S.M.; Vaccaro, J.A. The Quantum Phase Operator: A Review; Taylor & Francis: Abingdon, UK, 2007. [Google Scholar]
- Coles, M.M. An upper bound on the rate of information transfer in optical vortex beams. Laser Phys. Lett. 2018, 15, 095202. [Google Scholar] [CrossRef] [Green Version]
- Andrews, D.L.; Babiker, M. The Angular Momentum of Light; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Bekshaev, A.Y.; Soskin, M.; Vasnetsov, M.V. Paraxial Light Beams with Angular Momentum; Nova Science: New York, NY, USA, 2008. [Google Scholar]
- Nieminen, T.A.; Stilgoe, A.B.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Angular momentum of a strongly focused Gaussian beam. J. Opt. A Pure Appl. Opt. 2008, 10, 115005. [Google Scholar] [CrossRef]
- Zangwill, A. Modern Electrodynamics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Forbes, K.A.; Green, D.; Jones, G.A. Relevance of longitudinal fields of paraxial optical vortices. J. Opt. 2021, 23, 075401. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 2015, 592, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Neugebauer, M.; Bauer, T.; Aiello, A.; Banzer, P. Measuring the transverse spin density of light. Phys. Rev. Lett. 2015, 114, 063901. [Google Scholar] [CrossRef] [Green Version]
- Barnett, S.M.; Allen, L. Orbital angular momentum and nonparaxial light beams. Opt. Commun. 1994, 110, 670–678. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Alonso, M.A.; Ostrovskaya, E.A.; Aiello, A. Angular momenta and spin-orbit interaction of nonparaxial light in free space. Phys. Rev. A 2010, 82, 063825. [Google Scholar] [CrossRef] [Green Version]
- Bekshaev, A.; Bliokh, K.Y.; Soskin, M. Internal flows and energy circulation in light beams. J. Opt. 2011, 13, 053001. [Google Scholar] [CrossRef] [Green Version]
- Bliokh, K.Y.; Rodríguez-Fortuño, F.; Nori, F.; Zayats, A.V. Spin-orbit interactions of light. Nat. Photonics 2015, 9, 796–808. [Google Scholar] [CrossRef]
- Courtial, J.; Padgett, M.J. Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle. Opt. Commun. 2000, 173, 269–274. [Google Scholar] [CrossRef]
- Volyar, A.V.; Shvedov, V.G.; Fadeeva, T.A. The structure of a nonparaxial Gaussian beam near the focus: II. Optical vortices. Opt. Spectrosc. 2001, 90, 93–100. [Google Scholar] [CrossRef]
- Zhao, Y.; Edgar, J.S.; Jeffries, G.D.; McGloin, D.; Chiu, D.T. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 2007, 99, 073901. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, P.B.; Neto, P.A.M.; Nussenzveig, H.M. Angular momentum of focused beams: Beyond the paraxial approximation. Phys. Rev. A 2009, 79, 033830. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, C.J. Focusing of vortex beams: Lommel treatment. J. Opt. A Pure Appl. Opt. 2014, 31, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Bliokh, K.Y.; Ostrovskaya, E.A.; Alonso, M.A.; Rodríguez-Herrera, O.G.; Lara, D.; Dainty, C. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt. Express 2011, 19, 26132–26149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchard, F.; De Leon, I.; Schulz, S.A.; Upham, J.; Karimi, E.; Boyd, R.W. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges. Appl. Phys. Lett. 2014, 105, 101905. [Google Scholar] [CrossRef] [Green Version]
- Marrucci, L.; Manzo, C.; Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 2006, 96, 163905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, H.; Gu, M. Angular momentum-reversible near-unity bisignate circular dichroism. Laser Photon. Rev. 2018, 12, 1700255. [Google Scholar] [CrossRef]
- Kaviani, H.; Ghobadi, R.; Behera, B.; Wu, M.; Hryciw, A.; Vo, S.; Fattal, D.; Barclay, P. Optomechanical detection of light with orbital angular momentum. Opt. Express 2020, 28, 15482–15496. [Google Scholar] [CrossRef]
- Xiong, H.; Huang, Y.-M.; Wu, Y. Laguerre-Gaussian optical sum-sideband generation via orbital angular momentum exchange. Phys. Rev. A 2021, 103, 043506. [Google Scholar] [CrossRef]
- Dholakia, K.; Simpson, N.B.; Padgett, M.J.; Allen, L. Second-harmonic generation and the orbital angular momentum of light. Phys. Rev. A 1996, 54, R3742–R3745. [Google Scholar] [CrossRef]
- Courtial, J.; Dholakia, K.; Allen, L.; Padgett, M.J. Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes. Phys. Rev. A 1997, 56, 4193–4196. [Google Scholar] [CrossRef]
- Gariepy, G.; Leach, J.; Kim, K.T.; Hammond, T.J.; Frumker, E.; Boyd, R.W.; Corkum, P.B. Creating high-harmonic beams with controlled orbital angular momentum. Phys. Rev. Lett. 2014, 113, 153901. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.; Padgett, M.J.; Babiker, M. The orbital angular momentum of light. Prog. Opt. 1999, 39, 291–372. [Google Scholar]
- Galvez, E.J.; Khadka, S.; Schubert, W.H.; Nomoto, S. Poincaré-beam patterns produced by nonseparable superpositions of Laguerre–Gauss and polarization modes of light. Appl. Opt. 2012, 51, 2925–2934. [Google Scholar] [CrossRef] [Green Version]
- Khajavi, B.; Galvez, E.J. Determining topological charge of an optical beam using a wedged optical flat. Opt. Lett. 2017, 42, 1516–1519. [Google Scholar] [CrossRef]
- Pan, S.; Pei, C.; Liu, S.; Wei, J.; Wu, D.; Liu, Z.; Yin, Y.; Xia, Y.; Yin, J. Measuring orbital angular momentums of light based on petal interference patterns. OSA Contin. 2018, 1, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Lan, B.; Liu, C.; Rui, D.; Chen, M.; Shen, F.; Xian, H. The topological charge measurement of the vortex beam based on dislocation self-reference interferometry. Phys. Scr. 2019, 94, 055502. [Google Scholar] [CrossRef]
- Barnett, S.M.; Allen, L.; Cameron, R.P.; Gilson, C.R.; Padgett, M.J.; Speirits, F.C.; Yao, A.M. On the natures of the spin and orbital parts of optical angular momentum. J. Opt. 2016, 18, 064004. [Google Scholar] [CrossRef]
- Fernandez-Corbaton, I. A conformally invariant derivation of average electromagnetic helicity. Symmetry 2019, 11, 1427. [Google Scholar] [CrossRef] [Green Version]
- Lipkin, D.M. Existence of a new conservation law in electromagnetic theory. J. Math. Phys. 1964, 5, 696–700. [Google Scholar] [CrossRef]
- Fushchich, W.; Nikitin, A. The complete sets of conservation laws for the electromagnetic field. J. Phys. A Math. Gen. 1992, 25, L231–L233. [Google Scholar] [CrossRef]
- Anco, S.C.; Pohjanpelto, J. Classification of local conservation laws of Maxwell′s equations. Acta Appl. Math. 2001, 69, 285–327. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Bekshaev, A.Y.; Nori, F. Dual electromagnetism: Helicity, spin, momentum and angular momentum. New J. Phys. 2013, 15, 033026. [Google Scholar] [CrossRef]
- Philbin, T.G. Lipkin’s conservation law, Noether’s theorem, and the relation to optical helicity. Phys. Rev. A 2013, 87, 043843. [Google Scholar] [CrossRef] [Green Version]
- Bliokh, K.Y.; Nori, F. Characterizing optical chirality. Phys. Rev. A 2011, 83, 021803. [Google Scholar] [CrossRef] [Green Version]
- Nienhuis, G. Conservation laws and symmetry transformations of the electromagnetic field with sources. Phys. Rev. A 2016, 93, 023840. [Google Scholar] [CrossRef] [Green Version]
- Crimin, F.; Mackinnon, N.; Götte, J.B.; Barnett, S.M. Optical helicity and chirality: Conservation and sources. Appl. Sci. 2019, 9, 828. [Google Scholar] [CrossRef] [Green Version]
- Forbes, K.A.; Jones, G.A. Optical vortex dichroism in chiral particles. Phys. Rev. A 2021, 103, 053515. [Google Scholar] [CrossRef]
- Natarajan, R.; Basak, S.C. Numerical characterization of molecular chirality of organic compounds. Curr. Comp. Aid. Drug Des. 2009, 5, 13–22. [Google Scholar] [CrossRef]
- Andrews, D.L.; Coles, M.M. Measures of chirality and angular momentum in the electromagnetic field. Opt. Lett. 2012, 37, 3009–3011. [Google Scholar] [CrossRef] [PubMed]
- Ladd, M. Symmetry of Crystals and Molecules; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Babiker, M.; Bennett, C.R.; Andrews, D.L.; Dávila Romero, L.C. Orbital angular momentum exchange in the interaction of twisted light with molecules. Phys. Rev. Lett. 2002, 89, 143601. [Google Scholar] [CrossRef]
- Lloyd, S.; Babiker, M.; Yuan, J. Quantized orbital angular momentum transfer and magnetic dichroism in the interaction of electron vortices with matter. Phys. Rev. Lett. 2012, 108, 074802. [Google Scholar] [CrossRef] [PubMed]
- Lembessis, V.E.; Babiker, M. Enhanced quadrupole effects for atoms in optical vortices. Phys. Rev. Lett. 2013, 110, 083002. [Google Scholar] [CrossRef]
- Mondal, P.K.; Deb, B.; Majumder, S. Angular momentum transfer in interaction of Laguerre-Gaussian beams with atoms and molecules. Phys. Rev. A 2014, 89, 063418. [Google Scholar] [CrossRef] [Green Version]
- Afanasev, A.; Carlson, C.E.; Mukherjee, A. High-multipole excitations of hydrogen-like atoms by twisted photons near a phase singularity. J. Opt. 2016, 18, 074013. [Google Scholar] [CrossRef] [Green Version]
- Schmiegelow, C.T.; Schulz, J.; Kaufmann, H.; Ruster, T.; Poschinger, U.G.; Schmidt-Kaler, F. Transfer of optical orbital angular momentum to a bound electron. Nat. Commun. 2016, 7, 12998. [Google Scholar] [CrossRef]
- Sakai, K.; Yamamoto, T.; Sasaki, K. Nanofocusing of structured light for quadrupolar light-matter interactions. Sci. Rep. 2018, 8, 7746. [Google Scholar] [CrossRef] [Green Version]
- Schulz, S.-L.; Peshkov, A.; Müller, R.; Lange, R.; Huntemann, N.; Tamm, C.; Peik, E.; Surzhykov, A. Generalized excitation of atomic multipole transitions by twisted light modes. Phys. Rev. A 2020, 102, 012812. [Google Scholar] [CrossRef]
- Forbes, K.A. Nonlinear chiral molecular photonics using twisted light: Hyper-Rayleigh and hyper-Raman optical activity. J. Opt. 2020, 22, 095401. [Google Scholar] [CrossRef]
- Bougouffa, S.; Babiker, M. Atom trapping and dynamics in the interaction of optical vortices with quadrupole-active transitions. Phys. Rev. A 2020, 101, 043403. [Google Scholar] [CrossRef] [Green Version]
- Forbes, K.A.; Andrews, D.L. Spin-orbit interactions and chiroptical effects engaging orbital angular momentum of twisted light in chiral and achiral media. Phys. Rev. A 2019, 99, 023837. [Google Scholar] [CrossRef] [Green Version]
- Forbes, K.A.; Andrews, D.L. Enhanced optical activity using the orbital angular momentum of structured light. Phys. Rev. Res. 2019, 1, 033080. [Google Scholar] [CrossRef] [Green Version]
- Coles, M.M.; Williams, M.D.; Saadi, K.; Bradshaw, D.S.; Andrews, D.L. Chiral nanoemitter array: A launchpad for optical vortices. Laser Photon. Rev. 2013, 7, 1088–1092. [Google Scholar] [CrossRef]
- Williams, M.D.; Coles, M.M.; Saadi, K.; Bradshaw, D.S.; Andrews, D.L. Optical vortex generation from molecular chromophore arrays. Phys. Rev. Lett. 2013, 111, 153603. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.D.; Coles, M.M.; Bradshaw, D.S.; Andrews, D.L. Direct generation of optical vortices. Phys. Rev. A 2014, 89, 033837. [Google Scholar] [CrossRef] [Green Version]
- Kettle, S.F.A. Symmetry and Structure: Readable Group Theory for Chemists; Wiley: Chichester, UK, 2008. [Google Scholar]
- Ludwig, W.; Falter, C. Symmetries in Physics: Group Theory Applied to Physical Problems; Springer Science & Business Media: Berlin, Germany, 2012; Volume 64. [Google Scholar]
- Wang, W.; Gozali, R.; Shi, L.; Lindwasser, L.; Alfano, R. Deep transmission of Laguerre–Gaussian vortex beams through turbid scattering media. Opt. Lett. 2016, 41, 2069–2072. [Google Scholar] [CrossRef]
- Shi, L.; Lindwasser, L.; Wang, W.; Alfano, R.; Rodríguez-Contreras, A. Propagation of Gaussian and Laguerre-Gaussian vortex beams through mouse brain tissue. J. Biophotonics 2017, 10, 1756–1760. [Google Scholar] [CrossRef]
- Malik, M.; O’Sullivan, M.; Rodenburg, B.; Mirhosseini, M.; Leach, J.; Lavery, M.P.; Padgett, M.J.; Boyd, R.W. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt. Express 2012, 20, 13195–13200. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y. Statistics of optical vortex wander on propagation through atmospheric turbulence. J. Opt. Soc. Am. A 2013, 30, 708–716. [Google Scholar] [CrossRef]
- Mirhosseini, M.; Rodenburg, B.; Malik, M.; Boyd, R.W. Free-space communication through turbulence: A comparison of plane-wave and orbital-angular-momentum encodings. J. Mod. Opt. 2014, 61, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Xie, G.; Ren, Y.; Ahmed, N.; Huang, H.; Zhao, Z.; Liao, P.; Lavery, M.P.; Yan, Y.; Bao, C. Orbital-angular-momentum-multiplexed free-space optical communication link using transmitter lenses. Appl. Opt. 2016, 55, 2098–2103. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, R.; Liao, P.; Cao, Y.; Song, H.; Zhao, Y.; Du, J.; Zhao, Z.; Liu, C.; Pang, K. Mitigation for turbulence effects in a 40-Gbit/s orbital-angular-momentum-multiplexed free-space optical link between a ground station and a retro-reflecting UAV using MIMO equalization. Opt. Lett. 2019, 44, 5181–5184. [Google Scholar] [CrossRef]
- Norrman, A.; Friberg, A.T.; Leuchs, G. Vector-light quantum complementarity and the degree of polarization. Optica 2020, 7, 93–97. [Google Scholar] [CrossRef]
- Wang, J.; Castellucci, F.; Franke-Arnold, S. Vectorial light–matter interaction: Exploring spatially structured complex light fields. AVS Quantum Sci. 2020, 2, 031702. [Google Scholar] [CrossRef]
- Hu, X.-B.; Perez-Garcia, B.; Rodríguez-Fajardo, V.; Hernandez-Aranda, R.I.; Forbes, A.; Rosales-Guzmán, C. Free-space local nonseparability dynamics of vector modes. Photonics Res. 2021, 9, 439–445. [Google Scholar] [CrossRef]
- Milione, G.; Sztul, H.I.; Nolan, D.A.; Alfano, R.R. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 2011, 107, 053601. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, D.; Roux, F.S.; Dudley, A.; Litvin, I.; Piccirillo, B.; Marrucci, L.; Forbes, A. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics 2016, 10, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, L.; Xin, Y. Generation of full Poincare beams on arbitrary order Poincare sphere. Curr. Opt. Photonics 2017, 1, 631–636. [Google Scholar]
- Woźniak, W.A.; Kurzynowski, P.; Popiołek-Masajada, A. Polarization vortices as a superposition of orthogonal phase vortices. Opt. Commun. 2019, 441, 155–159. [Google Scholar] [CrossRef]
- Saito, S. Poincaré rotator for vortexed photons. Front. Phys. 2021, 9, 646228. [Google Scholar] [CrossRef]
- Freund, I. Polarization flowers. Opt. Commun. 2001, 199, 47–63. [Google Scholar] [CrossRef]
- Boyd, R.W.; Padgett, M.J. Quantum mechanical properties of light fields carrying orbital angular momentum. In Optics in Our Time; Al-Amri, M.D., El-Gomati, M.M., Zubairy, M.S., Eds.; Springer: Cham, Switzerland, 2016; pp. 435–454. [Google Scholar]
- Xie, G.; Li, L.; Ren, Y.; Huang, H.; Yan, Y.; Ahmed, N.; Zhao, Z.; Lavery, M.P.J.; Ashrafi, N.; Ashrafi, S.; et al. Performance metrics and design considerations for a free-space optical orbital-angular-momentum-multiplexed communication link. Optica 2015, 2, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Advances in communications using optical vortices. Photonics Res. 2016, 4, B14–B28. [Google Scholar] [CrossRef]
- Tyler, G.A.; Boyd, R.W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. Opt. Lett. 2009, 34, 142–144. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; McDuffie, S.; Najjar, M.A.M.; Rafsanjani, S.M.H.; Korotkova, O. Mitigation of atmospheric turbulence with random light carrying OAM. Opt. Commun. 2019, 446, 178–185. [Google Scholar] [CrossRef]
- Lavery, M.P.; Peuntinger, C.; Günthner, K.; Banzer, P.; Elser, D.; Boyd, R.W.; Padgett, M.J.; Marquardt, C.; Leuchs, G. Free-space propagation of high-dimensional structured optical fields in an urban environment. Sci. Adv. 2017, 3, e1700552. [Google Scholar] [CrossRef] [Green Version]
- Bobkova, V.; Stegemann, J.; Droop, R.; Otte, E.; Denz, C. Optical grinder: Sorting of trapped particles by orbital angular momentum. Opt. Express 2021, 29, 12967–12975. [Google Scholar] [CrossRef]
- Bianchi, S.; Vizsnyiczai, G.; Ferretti, S.; Maggi, C.; Di Leonardo, R. An optical reaction micro-turbine. Nat. Commun. 2018, 9, 1–6. [Google Scholar]
- Shen, Z.; Xiang, Z.; Wang, Z.; Shen, Y.; Zhang, B. Optical spanner for nanoparticle rotation with focused optical vortex generated through a Pancharatnam–Berry phase metalens. Appl. Opt. 2021, 60, 4820–4826. [Google Scholar] [CrossRef]
- Otte, E.; Denz, C. Optical trapping gets structure: Structured light for advanced optical manipulation. Appl. Phys. Rev. 2020, 7, 041308. [Google Scholar] [CrossRef]
- Syubaev, S.; Zhizhchenko, A.; Kuchmizhak, A.; Porfirev, A.; Pustovalov, E.; Vitrik, O.; Kulchin, Y.; Khonina, S.; Kudryashov, S. Direct laser printing of chiral plasmonic nanojets by vortex beams. Opt. Express 2017, 25, 10214–10223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brullot, W.; Vanbel, M.K.; Swusten, T.; Verbiest, T. Resolving enantiomers using the optical angular momentum of twisted light. Sci. Adv. 2016, 2, e1501349. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Deng, Z.-L.; Cao, Y.; Hu, D.; Xu, Y.; Cai, B.; Jin, L.; Bao, Y.; Wang, X.; Li, X. Angular momentum-dependent transmission of circularly polarized vortex beams through a plasmonic coaxial nanoring. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar]
- Sirenko, A.; Marsik, P.; Bernhard, C.; Stanislavchuk, T.; Kiryukhin, V.; Cheong, S.-W. Terahertz vortex beam as a spectroscopic probe of magnetic excitations. Phys. Rev. Lett. 2019, 122, 237401. [Google Scholar] [CrossRef] [Green Version]
- Afanasev, A.; Carlson, C.E.; Solyanik, M. Circular dichroism of twisted photons in non-chiral atomic matter. J. Opt. 2017, 19, 105401. [Google Scholar] [CrossRef] [Green Version]
- Solyanik-Gorgone, M.; Afanasev, A.; Carlson, C.E.; Schmiegelow, C.T.; Schmidt-Kaler, F. Excitation of E1-forbidden atomic transitions with electric, magnetic, or mixed multipolarity in light fields carrying orbital and spin angular momentum. J. Opt. Soc. Am. B 2019, 36, 565–574. [Google Scholar] [CrossRef]
E | ||||
---|---|---|---|---|
A1 | +1 | +1 | +1 | |
A2 | +1 | +1 | −1 |
E | |||||
---|---|---|---|---|---|
A1 | +1 | +1 | +1 | +1 | |
A2 | +1 | +1 | −1 | −1 | |
B1 | +1 | +1 | +1 | −1 | |
B2 | +1 | +1 | −1 | +1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrews, D.L. Symmetry and Quantum Features in Optical Vortices. Symmetry 2021, 13, 1368. https://doi.org/10.3390/sym13081368
Andrews DL. Symmetry and Quantum Features in Optical Vortices. Symmetry. 2021; 13(8):1368. https://doi.org/10.3390/sym13081368
Chicago/Turabian StyleAndrews, David L. 2021. "Symmetry and Quantum Features in Optical Vortices" Symmetry 13, no. 8: 1368. https://doi.org/10.3390/sym13081368
APA StyleAndrews, D. L. (2021). Symmetry and Quantum Features in Optical Vortices. Symmetry, 13(8), 1368. https://doi.org/10.3390/sym13081368