Coupled Fractional Traveling Wave Solutions of the Extended Boussinesq–Whitham–Broer–Kaup-Type Equations with Variable Coefficients and Fractional Order
Abstract
:1. Introduction
2. Prelimiraries
2.1. The Basic Definition
2.2. The Improved System Method with Parameter Functions
- Step 1.
- Substituting the unknown functions are by using the fractional traveling wave variable as
- Step 2.
- Step 3.
- By substituting (9) into Equation (5), collecting all terms with the same order of together, the left-hand sides of Equation (5) are converted into another polynomial in terms of . Equating each coefficient of these polynomials to zero, we produce a set of algebraic equations for the coefficients and the speed function .
- Step 4.
3. The Fractional Traveling Wave Solutions of the Fractional NPDEs through Equation (2)
3.1. The Fractional BWBK Equations with Variable Coefficients
3.1.1. The Integrability of Equation (10) via the Painlevé Test
3.1.2. The Coupled Fractional Traveling Wave Solutions of Equation (10)
3.2. The Fractional WBK Equations with Variable Coefficients
3.3. The Fractional Boussinesq Equations with Variable Coefficients
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Klopman, G.; Van Groesen, E.; Dingemans, M.W. A variational approach to Boussinesq modelling of fully nonlinear water waves. J. Fluid Mech. 2010, 657, 36–63. [Google Scholar] [CrossRef]
- Lawrence, C.; Adytia, D.; Van Groesen, E. Variational Boussinesq model for strongly nonlinear dispersive waves. Wave Motion 2017, 76. [Google Scholar] [CrossRef]
- Khan, K.; Akbar, M.A. Study of analytical method to seek for exact solutions of variant Boussinesq equations. Springer Plus 2014, 3, 324. Available online: http://www.springerplus.com/content/3/1/324 (accessed on 27 June 2014). [CrossRef] [Green Version]
- Wang, M.; Li, X.; Zhang, J. The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 2008, 372, 417–423. [Google Scholar] [CrossRef]
- Abazari, R.; Jamshidzadeh, S.; Biswas, A. Solitary wave solutions of coupled Boussinesq equation. Complexity 2016, 21, 151–155. [Google Scholar] [CrossRef]
- Tian, B.; Qiu, Y. Exact and Explicit Solutions of Whitham-Broer-Kaup Equations in Shallow Water. Pure Appl. Math. J. 2016, 5, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yong, X.; Chen, Y. Symmetry analysis for Whitham-Broer-Kaup equations. J. Nonlinear Math. Phys. 2008, 15, 383–397. [Google Scholar] [CrossRef] [Green Version]
- Mohyud-Din, S.T.; Yıldırım, A.; Demirli, G. Traveling wave solutions of Whitham–Broer–Kaup equations by homotopy perturbation method. J. King Saud Univ. Sci. 2010, 22, 173–176. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.D.; Yan, Z.Y.; Zhang, H.Q. Explicit and exact traveling wave solutions of Whitham-Broer-Kaup shallow water equations. Phys. Lett. A 2001, 285, 76–80. [Google Scholar] [CrossRef]
- El-sayed, S.M.; Kaya, D. Exact and numerical traveling wave solutions of Whitham-Broer-Kaup equations. Appl. Math. Comput. 2005, 167, 1339–1349. [Google Scholar] [CrossRef]
- Yang, X.-F.; Deng, Z.-C.; Lib, Q.-J.; Wei, Y. Exact combined traveling wave solutions and multi-symplectic structure of the variant Boussinesq-Whitham-Broer-Kaup type equations. Commun. Nonliner Sci. Numer. Simul. 2016, 36, 1–13. [Google Scholar] [CrossRef]
- Atangana, A.; Alqahtani, R.T. Modelling the spread of river blindness disease via the Caputo Fractional Derivative and the Beta-derivative. Entrophy 2016, 18, 40. [Google Scholar] [CrossRef]
- Atangana, A.; Goufo, E.F.D. Extension of mathced asymtotic method to fractional boundary layers problems. Math. Probl. Eng. 2014, 2014, 107535. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Tang, L.; Xia, Y.; Zhang, Y. Bifurcations and Exact Solutions for a Class of MKdV Equations with the Conformable Fractional Derivative via Dynamical System Method. Int. J. Bifurc. Chaos 2020, 30, 2050004. [Google Scholar] [CrossRef]
- Gao, F.; Chi, C. Improvement on Conformable Fractional Derivative and Its Applications in Fractional Differential Equations. J. Funct. Spac. 2020, 2020, 5852414. [Google Scholar] [CrossRef]
- Korpina, Z.; Tchier, F.; Bousbahi, F.; Tawfiq, F.; AliAkinlar, M. Applicability of time conformable derivative to Wick-fractional-stochastic PDEs. Alexandria Eng. J. 2020, 59, 1485–1493. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, H. Exact traveling wave solutions of the stochastic Wick-type fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation. AIMS Math. 2021, 6, 4053–4072. [Google Scholar] [CrossRef]
- Kim, H.; Sakthivel, R.; Debbouche, A.; Torres, D.F.M. Traveling wave solutions of some important Wick-type fractional stochastic nonlinear partial differential equations. Chaos Solitons Fractals 2020, 131, 109542. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Kim, H.; Sakthivel, R. Periodic and solitary wave solutions of some important physical models with variable coefficients. Waves Random Complex Media 2019. [Google Scholar] [CrossRef]
- Choi, J.H.; Lee, S.; Kim, H. Stochastic Effects for the Reaction-Duffing Equation with Wick-Type Product. Adv. Math. Phys. 2016, 2016. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S. Explicit solutions of the fifth-order KdV type nonlinear evolution equation using the system technique. Results Phys. 2016, 6, 992–997. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhou, Y.; Li, Z. Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Equations in Mathematical Physics. Phys. Lett. A 1996, 216, 67–75. [Google Scholar] [CrossRef]
- Wang, M.L. Exact solutions for a compound KdV-Burgers equation. Phys. Lett. A 1996, 213, 279–287. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Ramani, A.; Segar, H. A connection between nonlinear evolution equations and ordinary differential equations of P-type. I. J. Math. Phys. 1980, 21, 715–721. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Ramani, A.; Segar, H. A connection between nonlinear evolution equations and ordinary differential equations of P-type. II. J. Math. Phys. 1980, 21, 1006–1015. [Google Scholar] [CrossRef]
- Kupershmidt, B.A. Mathematics of Dispersive Water Waves. Commun. Math. Phys. 1985, 99, 51–73. [Google Scholar] [CrossRef]
- Lin, J.; Xu, Y.-S.; Wu, F.-M. Evolution property of soliton solutions for the Whitham-Broer-Kaup equation and variant Boussinesq equation. Chin. Phys. 2003, 12, 1049–1053. [Google Scholar]
- Fan, E.; Hon, Y.C. A series of traveling wave solutions for the two variant Boussinesq equations in shallow water waves. Chaos Solitons Fractals 2003, 15, 559–566. [Google Scholar] [CrossRef]
- Sachs, R.L. On the integrable variant of the Boussinesq system: Painlevé property, rational solutions, a related many-body system, and equivalence with the AKNS hierarchy. Physica D 1998, 30, 1–27. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Ai-Nowehy, A.G. Solitons and the exact solutions for variant nonlinear Boussinesq equations. Optik 2017, 139, 166–177. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.H.; Kim, H. Coupled Fractional Traveling Wave Solutions of the Extended Boussinesq–Whitham–Broer–Kaup-Type Equations with Variable Coefficients and Fractional Order. Symmetry 2021, 13, 1396. https://doi.org/10.3390/sym13081396
Choi JH, Kim H. Coupled Fractional Traveling Wave Solutions of the Extended Boussinesq–Whitham–Broer–Kaup-Type Equations with Variable Coefficients and Fractional Order. Symmetry. 2021; 13(8):1396. https://doi.org/10.3390/sym13081396
Chicago/Turabian StyleChoi, Jin Hyuk, and Hyunsoo Kim. 2021. "Coupled Fractional Traveling Wave Solutions of the Extended Boussinesq–Whitham–Broer–Kaup-Type Equations with Variable Coefficients and Fractional Order" Symmetry 13, no. 8: 1396. https://doi.org/10.3390/sym13081396
APA StyleChoi, J. H., & Kim, H. (2021). Coupled Fractional Traveling Wave Solutions of the Extended Boussinesq–Whitham–Broer–Kaup-Type Equations with Variable Coefficients and Fractional Order. Symmetry, 13(8), 1396. https://doi.org/10.3390/sym13081396