Symmetric and Asymmetric Diffusions through Age-Varying Mixed-Species Stand Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Voronoi Diagram
2.2. Bivariate SDEs of Diameter and Polygon Area
2.3. Data
3. Results
3.1. Parameter-Estimating Results
3.2. Bivariate and Marginal Distributions
4. Discussion
4.1. Modeling Tree-Diameter Dynamics: Predicting and Forecasting
4.2. Modeling Tree Polygon Area: Predicting and Forecasting
4.3. Modeling Stand Density: Predicting and Forecasting
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García, O. Estimating reducible stochastic differential equations by conversion to a least-squares problem. Comput. Stat. 2019, 34, 23–46. [Google Scholar] [CrossRef] [Green Version]
- Nafidi, A.; Makroz, I.; Gutiérrez Sánchez, R. A Stochastic Lomax Diffusion Process: Statistical Inference and Application. Mathematics 2021, 9, 100. [Google Scholar] [CrossRef]
- Dipple, S.; Choudhary, A.; Flamino, J.; Szymanski, B.K.; Korniss, G. Using Correlated Stochastic Differential Equations to Forecast Cryptocurrency Rates and Social Media Activities. Appl. Netw. Sci. 2020, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Ding, T.; Gao, N.; Song, Y. Dynamical Behavior of a Stochastic SIRC Model for Influenza A. Symmetry 2020, 12, 745. [Google Scholar] [CrossRef]
- Chow, C.C.; Buice, M.A. Path integral methods for stochastic differential equations. J. Math. Neurosci. 2015, 5, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiqvist, S.; Golightly, A.; McLean, A.T.; Picchini, U. Efficient inference for stochastic differential equation mixed-effects models using correlated particle pseudo-marginal algorithms. Comput. Stat. Data Anal. 2020, 157, 107151. [Google Scholar] [CrossRef]
- Holmes, M.J.; Reed, D.D. Competition indices for mixed species northern hardwoods. For. Sci. 1991, 37, 1338–1349. [Google Scholar]
- Rupšys, P.; Petrauskas, E. A New Paradigm in Modelling the Evolution of a Stand via the Distribution of Tree Sizes. Sci. Rep. 2017, 7, 15875. [Google Scholar] [CrossRef] [Green Version]
- Pommerening, A.; Szmyt, J.; Zhang, G. A new nearest-neighbour index for monitoring spatial size diversity: The hyper-bolic tangent index. Ecol. Model. 2020, 435, 109232. [Google Scholar] [CrossRef]
- Voronoi, G. Nouvelles applications des paramètres continues à la théorie des formes quad-ratiques. J. Für Die Reine Und Angew. Math. 1908, 134, 198–287. [Google Scholar] [CrossRef]
- Weiskittel, A.R.; Hann, D.W.; Kershaw, J.A.; Vanclay, J.K. Forest Growth and Yield Modeling; Wiley: Hoboken, NJ, USA, 2011; p. 430. [Google Scholar]
- Sloboda, B. Kolmogorow–Suzuki und die stochastische Differentialgleichung als Beschreibungsmittel der Bestandesevolution. Mitt Forstl Bundes Vers. Wien 1977, 120, 71–82. [Google Scholar]
- Garcia, O. A stochastic differential equation model for the height growth of forest stands. Biometrics 1983, 39, 1059–1072. [Google Scholar] [CrossRef]
- Rupšys, P.; Petrauskas, E. Quantifying Tree Diameter Distributions with One-Dimensional Diffusion Processes. J. Biol. Syst. 2010, 18, 205–221. [Google Scholar] [CrossRef]
- Bormashenko, E.; Legchenkova, I.; Frenkel, M. Symmetry and Shannon Measure of Ordering: Paradoxes of Voronoi Tessellation. Entropy 2019, 21, 452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diggle, P.J. Statistical Analysis of Spatial Point Patterns; Academic Press: New York, NY, USA, 1983; p. 148. [Google Scholar]
- Aurenhammer, F. Voronoi diagrams—A survey of a fundamental geometric data structure. ACM Comput. Surv. 1991, 23, 345–405. [Google Scholar] [CrossRef]
- Kuehne, C.; Weiskittel, A.; Simons-Legaard, E.; Legaard, K. Development and comparison of various stand- and tree-level modeling approaches to predict harvest occurrence and intensity across the mixed forests in Maine, northeastern US. Scand. J. For. Res. 2019, 34, 739–750. [Google Scholar] [CrossRef]
- McTague, J.P.; Weiskittel, A.R. Individual-Tree Competition Indices and Improved Compatibility with Stand-Level Estimates of Stem Density and Long-Term Production. Forests 2016, 7, 238. [Google Scholar] [CrossRef] [Green Version]
- Narmontas, M.; Rupšys, P.; Petrauskas, E. Models for Tree Taper Form: The Gompertz and Vasicek Diffusion Processes Framework. Symmetry 2020, 12, 80. [Google Scholar] [CrossRef] [Green Version]
- Botha, I.; Kohn, R.; Drovandi, C. Particle Methods for Stochastic Differential Equation Mixed Effects Models. Bayesian Anal. 2021, 16, 575–609. [Google Scholar] [CrossRef]
- Chew, V. Confidence, Prediction, and Tolerance Regions for the Multivariate Normal Distribution. J. Am. Stat. Assoc. 1966, 61, 605–617. [Google Scholar] [CrossRef]
- Krishnamoorthy, K. Comparison of Approximation Methods for Computing Tolerance Factors for a Multivariate Normal Population. Technometrics 1999, 41, 234–249. [Google Scholar] [CrossRef]
- Bailey, R.L.; Clutter, J.L. Base-Age Invariant Polymorphic Site Curves. For. Sci. 1974, 20, 155–159. [Google Scholar]
- Cieszewski, C.J.; Bailey, R.L. Generalized Algebraic Difference Approach: Theory Based Derivation of Dynamic Site Equations with Polymorphism and Variable Asymptotes. For. Sci. 2000, 46, 116–126. [Google Scholar]
- Zhang, X.; Cao, Q.V.; Lu, L.; Wang, H.; Duan, A.; Zhang, J. Use of modified Reineke’s stand density index in predicting growth and survival of Chinese fir plantations. For. Sci. 2019, 65, 776–783. [Google Scholar] [CrossRef]
- Rupšys, P. Modeling Dynamics of Structural Components of Forest Stands Based on Trivariate Stochastic Differential Equation. Forests 2019, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- West, P.W. Comparison of stand density measures in even-aged regrowth eucalypt forest of southern Tasmania. Can. J. For. Res. 1983, 13, 22–31. [Google Scholar] [CrossRef]
- Zeide, B. Comparison of self-thinning models: An exercise in reasoning. Trees 2010, 24, 1117–1126. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Zhao, L.; Guo, S.; Sun, L.; Zhao, X. Adaptive Distance-Weighted Voronoi Tessellation for Remote Sensing Image Segmentation. Remote Sens. 2020, 12, 4115. [Google Scholar] [CrossRef]
- Zhao, D.; Borders, B.; Wang, M.; Kane, M. Modeling mortality of second-rotation loblolly pine plantations in the piedmont/upper coastal plain and lower coastal plain of the southern United States. For. Ecol. Manag. 2007, 252, 132–143. [Google Scholar] [CrossRef]
- Cao, Q.V. A unified system for tree- and stand-level predictions. For. Ecol. Manag. 2021, 481, 118713. [Google Scholar] [CrossRef]
- Garcia, O. A parsimonious dynamic stand model for interior spruce in British Columbia. For. Sci. 2011, 57, 265–280. [Google Scholar]
Species | Data | Number of Trees | Min | Max | Mean | St. Dev. | Number of Trees | Min | Max | Mean | St. Dev. |
---|---|---|---|---|---|---|---|---|---|---|---|
Estimation | Validation | ||||||||||
Pine | t (year) | 28,982 | 5.0 | 172.0 | 49.14 | 22.16 | 6997 | 7.0 | 197.0 | 67.90 | 19.06 |
d (cm) | 28,982 | 0.5 | 61.0 | 17.87 | 9.17 | 6997 | 3.0 | 59.2 | 24.35 | 9.02 | |
p (m2) | 28,982 | 0.09 | 120.21 | 9.24 | 7.56 | 6997 | 0.44 | 84.84 | 13.02 | 8.54 | |
Spruce | t (year) | 11,493 | 12.0 | 207.0 | 59.63 | 21.57 | 7001 | 7.0 | 191.0 | 67.94 | 21.01 |
d (cm) | 11,493 | 0.20 | 62.0 | 11.68 | 7.34 | 7001 | 3.0 | 61.8 | 13.24 | 8.51 | |
p (m2) | 11,493 | 0.11 | 160.24 | 9.17 | 8.32 | 7001 | 0.26 | 77.76 | 9.46 | 7.65 | |
Birch | t (year) | 2880 | 5.0 | 107.32 | 47.75 | 17.88 | 663 | 16.0 | 129.73 | 60.29 | 15.87 |
d (cm) | 2880 | 0.90 | 45.40 | 14.46 | 8.13 | 663 | 3.0 | 50.0 | 19.91 | 9.30 | |
p (m2) | 2880 | 0.33 | 173.82 | 8.70 | 7.01 | 663 | 0.89 | 51.93 | 9.88 | 8.05 | |
t (year) | 43,410 | 5.0 | 207.0 | 51.84 | 22.27 | 14,711 | 7.0 | 197.0 | 67.55 | 19.94 | |
All | d (cm) | 43,410 | 0.20 | 62.0 | 16.0 | 9.07 | 14,711 | 3.0 | 61.80 | 18.87 | 10.35 |
p (m2) | 43,410 | 0.09 | 173.82 | 9.18 | 7.73 | 14,711 | 0.26 | 84.84 | 11.16 | 8.29 |
Species | δ | σd | σp | σ0 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
All | 48.3358 | 0.0086 | 0.0875 | 0.0273 | 1.3363 | 0.0199 | 0.2405 | 1.7344 | 11.5987 | 0.0121 | 1.5185 |
Pine | 59.8450 | 0.0081 | 0.0860 | 0.0251 | 0.8308 | 0.0174 | 0.2056 | 1.3111 | 11.3134 | 0.0098 | 0.9627 |
Spruce | 77.4686 | 0.0030 | 0.0836 | 0.0280 | 0.6393 | 0.0250 | 0.2851 | 1.7769 | 26.8149 | 0.0120 | 1.3815 |
Birch | 23.6670 | 0.0234 | 0.0802 | 0.0258 | 1.7425 | 0.0200 | 0.1823 | 2.0643 | 8.6172 | 0.0131 | 0.3988 |
Tree Species | Marginal Mean (Equation (7)) | Conditional Mean (Equation (19)) | ||||||
---|---|---|---|---|---|---|---|---|
B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 | |
All | 0.019 (0.10) | 0.798 (3.99) | 1.133 (5.67) | 0.949 | −0.431 (−2.16) | 0.782 (3.91) | 0.989 (4.95) | 0.961 |
Pine | −0.131 (−0.50) | 0.841 (3.19) | 1.141 (4.33) | 0.973 | −0.410 (−1.56) | 0.846 (3.21) | 1.158 (4.39) | 0.972 |
Spruce | 0.130 (0.90) | 0.977 (6.80) | 1.258 (8.76) | 0.928 | −0.345 (−2.40) | 0.906 (6.30) | 1.167 (8.12) | 0.938 |
Birch | −1.038 (−5.94) | 1.775 (10.15) | 3.096 (17.71) | 0.816 | −1.354 (−7.74) | 1.872 (10.71) | 3.086 (17.65) | 0.817 |
Tree Species | 5-Year Forecast Period | 13-Year Forecast Period | 35-Year Forecast Period | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 | |
All | −0.054 (−0.31) | 0.949 (5.52) | 1.440 (8.37) | 0.977 | −0.185 (−094) | 2.140 (10.82) | 2.911 (14.72) | 0.914 | −0.359 (−1.43) | 4.606 (18.45) | 5.654 (22.65) | 0.739 |
Pine | −0.335 (−1.48) | 0.982 (4.34) | 1.447 (6.39) | 0.968 | −0.919 (−3.65) | 2.178 (8.65) | 2.816 (11.19) | 0.886 | −2.352 (−7.76) | 4.469 (14.74) | 5.674 (18.71) | 0.615 |
Spruce | 0.147 (1.24) | 0.880 (7.42) | 1.402 (11.82) | 0.965 | 0.255 (1.83) | 1.927 (13.85) | 3.005 (21.60) | 0.859 | 0.681 (3.62) | 4.123 (21.89) | 5.159 (27.39) | 0.736 |
Birch | 0.020 0.10) | 1.286 (6.85) | 1.757 (9.38) | 0.960 | −0.321 (−1.50) | 2.697 (12.59) | 3.563 (16.64) | 0.832 | 1.289 (4.92) | 4.196 (16.03) | 5.405 (20.65) | 0.679 |
Tree Species | Marginal Mean (Equation (10)) | Conditional Mean (Equation (22)) | ||||||
---|---|---|---|---|---|---|---|---|
B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 | |
All | −0.305 (−2.46) | 1.062 (8.58) | 1.410 (11.26) | 0.929 | −0.184 (−1.49) | 0.914 (7.39) | 1.184 (9.57) | 0.949 |
Pine | −0.392 (−3.17) | 0.726 (5.87) | 1.009 (8.16) | 0.958 | −0.276 (−2.23) | 0.651 (5.27) | 0.883 (7.14) | 0.968 |
Spruce | −0.441 (−3.78) | 1.155 (9.89) | 1.597 (13.68) | 0.913 | −0.283 (−2.42) | 1.062 (9.10) | 1.454 (12.46) | 0.928 |
Birch | 0.202 (1.84) | 1.628 (14.84) | 2.318 (21.13) | 0.790 | 0.442 (4.03) | 1.571 (14.32) | 2.145 (19.56) | 0.820 |
Tree Species | 5-Year Forecast Period | 13-Year Forecast Period | 35-Year Forecast Period | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 | |
All | −0.601 (−6.01) | 1.126 (11.26) | 1.539 (15.38) | 0.959 | −0.555 (−4.69) | 2.756 (23.31) | 3.963 (33.51) | 0.786 | −1.581 (−11.09) | 5.107 (35.83) | 6.746 (47.33) | 0.463 |
Pine | −0.762 (−6.34) | 1.253 (10.43) | 1.621 (13.49) | 0.959 | −1.194 (−8.72) | 2.969 (21.70) | 3.850 (28.13) | 0.803 | −3.655 (−23.78) | 5.959 (38.66) | 7.167 (46.50) | 0.408 |
Spruce | −0.384 (−4.65) | 0.983 (11.90) | 1.466 (17.74) | 0.953 | 0.221 (2.19) | 2.601 (25.81) | 4.238 (42.04) | 0.725 | 0.664 (5.12) | 4.575 (35.25) | 6.798 (52.38) | 0.405 |
Birch | −0.539 (−6.04) | 1.004 (11.25) | 1.198 (13.43) | 0.971 | −0.785 (−7.93) | 2.504 (25.31) | 3.373 (34.09) | 0.827 | 0.201 (1.37) | 5.788 (39.61) | 7.458 (51.13) | 0.491 |
Tree Species | Marginal Mean (Equation (29) or (31)) | Conditional Mean (Equation (30) or (32)) | ||||||
---|---|---|---|---|---|---|---|---|
B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 | |
All | 0.686 (0.07) | 102.23 (10.50) | 166.149 (17.07) | 0.873 | −8.253 (−0.84) | 90.608 (9.31) | 147.297 (15.13) | 0.901 |
Pine | 19.339 (4.30) | 37.682 (8.39) | 49.302 (10.97) | 0.966 | 16.429 (3.65) | 34.762 (7.74) | 44.767 (9.96) | 0.972 |
Spruce | −3.720 (−0.62) | 76.165 (12.74) | 123.67 (20.67) | 0.934 | −14.901 (−2.49) | 68.768 (11.50) | 110.925 (18.56) | 0.947 |
Birch | 5.177 (7.89) | 9.920 (15.12) | 14.118 (21.52) | 0.984 | 4.860 (7.41) | 10.214 (15.57) | 14.151 (21.57) | 0.984 |
Tree Species | 5-Year Forecast Period | 13-Year Forecast Period | 35-Year Forecast Period | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 | B (%) | AB (%) | RMSE (%) | R2 | |
All | −59.492 (−5.36) | 60.113 (55.41) | 72.799 (6.56) | 0.981 | −24.644 (−2.73) | 94.991 (10.54) | 118.212 (13.11) | 0.897 | 62.025 (8.53) | 103.635 (14.67) | 125.749 (17.30) | 0.605 |
Pine | −15.920 (−3.25) | 40.292 (8.24) | 53.640 (10.97) | 0.966 | 31.761 (7.36) | 46.707 (10.82) | 56.766 (13.15) | 0.938 | 74.438 (20.26) | 87.838 (23.90) | 105.201 (28.63) | 0.751 |
Spruce | −24.434 (−5.50) | 37.735 (8.50) | 56.291 (12.68) | 0.982 | −58.010 (−15.04) | 60.760 (15.73) | 104.466 (27.08) | 0.914 | −19.460 (−6.57) | 29.808 (23.90) | 51.048 (17.26) | 0.925 |
Birch | −68.224 (−9.68) | 70.412 (9.99) | 90.988 (12.91) | 0.973 | −82.303 (−15.26) | 90.418 (16.76) | 128.911 (23.90) | 0.891 | −36.060 (−8.68) | 59.143 (14.25) | 78.997 (19.03) | 0.900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rupšys, P.; Petrauskas, E. Symmetric and Asymmetric Diffusions through Age-Varying Mixed-Species Stand Parameters. Symmetry 2021, 13, 1457. https://doi.org/10.3390/sym13081457
Rupšys P, Petrauskas E. Symmetric and Asymmetric Diffusions through Age-Varying Mixed-Species Stand Parameters. Symmetry. 2021; 13(8):1457. https://doi.org/10.3390/sym13081457
Chicago/Turabian StyleRupšys, Petras, and Edmundas Petrauskas. 2021. "Symmetric and Asymmetric Diffusions through Age-Varying Mixed-Species Stand Parameters" Symmetry 13, no. 8: 1457. https://doi.org/10.3390/sym13081457
APA StyleRupšys, P., & Petrauskas, E. (2021). Symmetric and Asymmetric Diffusions through Age-Varying Mixed-Species Stand Parameters. Symmetry, 13(8), 1457. https://doi.org/10.3390/sym13081457