Quantification of Sub-Solar Star Ages from the Symmetry of Conjugate Histograms of Spin Period and Angular Velocity
Abstract
:1. Introduction
1.1. Purpose
1.2. Organization
2. Background
2.1. Inverse vs. Forward Modeling
2.2. Useful Mathematical Attributes of Histograms
2.3. The Database on Spin Periods of Dwarf Stars
- An upper limit on П (and a corresponding lower limit on ω) exists and varies among the studies because starspot lifetimes must exceed the observational duration (e.g., [59]). Hence, stars with periods >25 days are difficult to measure and therefore underrepresented in data from the Kepler campaigns. The reliability study of 38 G-types in M67 found that 75% of the measurements of slow rotations were reliable, but only for П < 32 days [60].
- For all studies, a lower limit on П (and an upper limit on ω) is affected by factors such as the time between formation and the time at which a detectable (luminous) star exists. Under-representation of slow- and fast-spinning stars is accounted for in our approach (Section 3).
2.4. Relationships of Mass and Color Needed to Compare Star Spin Studies
2.5. Formulae Previously Applied to Period Data
- Equations (4)–(6) are fit to only a selected subset of the data, so data on many stars are ignored. From Figure 2, the strong curvature of the I-trend towards low B-V (large mass) differs among the various studies. Thus, the I-trend depends on the particular stars sampled. The axes of Figure 2 do not depict time, and so Skumanich’s proposal of t½ cannot be evaluated from such scatter plots.
- The I-trend reflects two factors other than aging of the star: namely, that Kepler missions have a maximum reliable period, and that M-type stars are volumetrically much more abundant than more massive stars (Figure 1a) and so statistically are likely to reveal a broader range of periods plus this upper limit.
- Equations (4)–(6) require peculiar dimensions for their numerical constants, which results from color-period diagrams not depicting elapsed time.
3. Quantitative, Mathematical Analysis of Star Spin Histograms
3.1. Histogram Shapes Do Not Support Coeval Star Production with Random Initial Spins
3.2. Analytical Approach to Deciphering the Rate Law for Constant Production
3.3. What If Stars Are Produced with Different Spin Values or Decay at Different Rates?
3.4. Effect of Episodic Star Production
3.5. Bin Size Has a Negligible Effect When Analyzing Paired Histograms
4. Analysis of Histogram Data on Dwarf Star Spin
4.1. Individual Clusters
4.1.1. Fits Are Slightly Affected by Star Mass and Sample Size
4.1.2. Bin Size and Depopulation of Bins near the Origin Have Little Effect
4.1.3. Results of Fitting Individual Clusters
4.2. Associations and the Solar Neighborhood
4.3. Ground-Based Measurements and a Comparison to Kepler Missions
4.4. Histograms of Stars from Open Clusters with Similar Mass
4.4.1. Aggregated Data on M-Types with a Numerical Test
- Periods of M stars in individual clusters behave similarly to the cluster as a whole (Figure 8a,b). Only M37 shows a peak at П = 12 d, which may represent episodic production. M37 is considered to be old and thus is most likely to depart from continuous production, since gas and dust are consumed with time.
4.4.2. Type-K Stars
4.4.3. Type-G Stars
4.5. Laws Governing Spin Decay for MKG, and Probably F, Stars
5. Mechanisms for Spin-Down
5.1. Fundamental Problems with the Magnetic Braking Hypothesis
- Our Sun’s magnetic field reverses polarity every 11 years, which is accompanied by its sunspot cycle. Forces for the two polarities would act in opposite directions (21), thus providing alternate braking and acceleration. Hence, magnetic braking cancels magnetic acceleration over very short-term of 22 yr. This 22 yr cycle is unchanged over ~400 years of observations [80,81].
- The sideways force depends on charge q, not on the mass of the charged particles. The stellar wind should be composed of roughly equal numbers of negatively and positively charged particles. Otherwise, the star would develop a net charge with time which then would preferentially retain the oppositely charged particles and restore charge balance. No net torques would arise.
5.2. Viscous Dissipation as the Mechanism of Spin-Down
6. New Isochrones from Histogram Analysis
6.1. Implications of Our Isochrones on Ages of Small Stars
6.2. Implications of Our Isochrones on Ages and Evolution of Clusters
7. Conclusions
7.1. Astrophysical Implications
7.2. General Applicability
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Soderblom, F.T. The ages of stars. Ann. Rev. Astron. Astrophys. 2010, 48, 581–629. [Google Scholar] [CrossRef] [Green Version]
- Strobel, N. Astronomy Notes; XanEdu: Ann Arbor, MI, USA, 2020. [Google Scholar]
- Amand, L.; Palacio, A.; Charbonnel, C.; Gallet, F.; Georgy, C.; Lagarde, N.; Siess, L. First grids of low-mass stellar models and isochrones with self-consistent treatment of rotation from 0.2 to 1.5M at seven metallicities from PMS to TAMS. Astron. Astro. 2019, 631, A77. [Google Scholar] [CrossRef] [Green Version]
- Gilmour, J. The extinct radionuclide timescale of the early solar system. Space Sci. Rev. 2000, 92, 123–132. [Google Scholar] [CrossRef]
- Dufton, P.L.; Dunstall, P.R.; Evans, C.J.; Brott, I.; Cantiello, M.; De Koter, A.; de Mink, S.; Fraser, M.; Hénault-Brunet, V.; Howarth, I.D.; et al. The VLT-FLAMES tarantula survey: The fastest rotating O-type star and shortest period LMC pulsar—remnants of a supernova disrupted binary? Astrophys. J. 2011, 743, L22. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; van den Ancker, M.E.; Launhardt, R.; Pott, J.U.; Fedele, D.; Henning, T. HD 135344B: A young star has reached its rotational limit. Astron. Astrophys. 2011, 530, A85. [Google Scholar] [CrossRef]
- Skumanich, A. Time scales for Ca II emission decay, rotational braking, and lithium depletion. Astrophys. J. 1972, 171, 565–567. [Google Scholar] [CrossRef]
- Terndrup, D.M.; Stauffer, J.R.; Pinsonneault, M.H.; Sills, A.; Yuan, Y.; Jones, B.F.; Fischer, D.; Krishnamurthi, A. Rotational velocities of low-mass stars in the Pleiades and Hyades. Astrophys. J. 2000, 119, 1303–1316. [Google Scholar] [CrossRef] [Green Version]
- Strassmeier, K.G. Starspots. Astron. Astrophys. Rev. 2009, 17, 251–308. [Google Scholar] [CrossRef] [Green Version]
- Finley, A.J.; Hewitt, A.L.; Matt, S.P.; Owers, M.; Pinto, R.F.; Veville, V. Direct detection of solar angular momentum loss with the Wind spacecraft. Astrophys. J. Lett. 2019, 885, L30. [Google Scholar] [CrossRef] [Green Version]
- Angus, R.; Morton, T.D.; Foreman-Mackey, D.; Van Saders, J.; Curtis, J.; Kane, S.R.; Bedell, M.; Kiman, R.; Hogg, D.W.; Brewer, J. Toward precise stellar ages: Combining isochrone fitting with empirical gyrochronology. Astron. J. 2019, 158, 173. [Google Scholar] [CrossRef]
- Chandrasekhar, S.; Münch, G. On the integral equation governing the distribution of the true and apparent rotational velocities of stars. Astrophys. J. 1950, 111, 142–156. [Google Scholar] [CrossRef]
- Henderson, C.B.; Stassun, K.G. Time-series photometry of stars in and around the Lagoon nebula. I. Rotation periods of 290 low-mass pre-main-sequence stars in NGC 6530. Astrophys. J. 2012, 747, 51. [Google Scholar] [CrossRef] [Green Version]
- Lamm, M.; Mundt, H.R.; Bailer-Jones, C.A.L.; Herbst, W. Rotational evolution of low mass stars: The case of NGC 2264. Astron. Astrophys. 2012, 430, 1005–1026. [Google Scholar] [CrossRef]
- Littlefair, S.P.; Naylor, T.; Mayne, N.J.; Saunders, E.S.; Jeffries, R.D. Rotation of young stars in Cepheus OB3b. Mon. Not. R. Astron. Soc. 2010, 403, 545–557. [Google Scholar] [CrossRef] [Green Version]
- Irwin, J.; Hodgkin, J.S.; Aigrain, S.; Bouvier, J.; Hebb, L.; Irwin, M.; Moraux, E. The Monitor project: Rotation of low-mass stars in NGC 2362—testing the disc regulation paradigm at 5 Myr. Mon. Not. R. Astron. Soc. 2008, 384, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Moraux, E.; Artemenko, S.; Bouvier, J.; Irwin, J.; Ibrahimov, M.; Magakian, T.; Grankin, K.; Nikogossian, E.; Cardoso, C.; Hodgkin, S.; et al. The Monitor project: Stellar rotation at 13 Myr. Astron. Astrophys. 2013, 560, A13. [Google Scholar] [CrossRef] [Green Version]
- Irwin, J.; Hodgkin, S.; Aigrain, S.; Bouvier, J.; Hebb, L.; Moraux, E. The Monitor project: Rotation of low-mass stars in the open cluster NGC 2547. Mon. Not. R. Astron. Soc. 2008, 383, 1588–1602. [Google Scholar] [CrossRef] [Green Version]
- Irwin, J.; Aigrain, S.; Bouvier, J.; Hebb, L.; Hodgkin, S.; Irwin, M.; Moraux, E. The Monitor project: Rotation periods of low-mass stars in M50. Mon. Not. R. Astron. Soc. 2009, 392, 1456–1466. [Google Scholar] [CrossRef] [Green Version]
- Hartman, J.D.; Bakos, G.A.; Kovacs, G.; Noyes, R.W. A large sample of photometric rotation periods for FGK Pleiades stars. Mon. Not. R. Astron. Soc. 2010, 408, 475–489. [Google Scholar] [CrossRef] [Green Version]
- Rebull, L.M.; Stauffer, J.R.; Bouvier, J.; Cody, A.M.; Hillenbrand, L.A.; Soderblom, D.R.; Valenti, J.; Barrado, D.; Bouy, H.; Ciardi, D.; et al. Rotation in the Pleiades with K2. I. Data and first results. Astron. J. 2016, 152, 113. [Google Scholar] [CrossRef] [Green Version]
- Covey, K.R.; Agueros, M.A.; Law, N.M.; Liu, J.; Ahmadi, A.; Laher, R.; Levitan, D.; Sesar, B.; Surace, J. Why are rapidly rotating M dwarfs in the Pleiades so (infra) red? New period measurements confirm rotation-dependent color offsets from the cluster sequence. Astrophys. J. 2016, 822, 81. [Google Scholar] [CrossRef]
- Meibom, S.; Mathieu, R.D.; Stassun, K.G. Stellar rotation in M35: Mass–period relations, spin-down rates, and gyrochronology. Astrophys. J. 2009, 695, 679–694. [Google Scholar] [CrossRef]
- Fritzewsky, D.J.; Barnes, S.A.; James, D.J.; Strassmeier, K.G. The rotation period distribution of the rich Pleiades-age southern open cluster NGC2516. Aston. Astrophys. 2020, 641, A51. [Google Scholar] [CrossRef]
- Irwin, J.; Hodgkin, S.; Aigrain, S.; Hebb, L.; Bouvier, J.; Clark, C.; Moraux, E.; Bramich, D.M. The Monitor project: Rotation of low-mass stars in the open cluster NGC 2516. Mon. Not. R. Astron. Soc. 2007, 377, 741–755. [Google Scholar] [CrossRef] [Green Version]
- Meibom, S.; Mathieu, R.D.; Stassun, K.G.; Liebesny, P.; Saar, S.H. The color–period diagram and stellar rotational evolution—new rotation period measurements in the open cluster M34. Astrophys. J. 2011, 733, 115. [Google Scholar] [CrossRef] [Green Version]
- Hartman, J.D.; Gaudi, B.S.; Holman, M.J.; McLeod, B.A.; Stanek, K.Z.; Barranco, J.A.; Pinsonneault, M.H.; Kalirai, J.S. Deep MMT transit survey of the open cluster M37. II. Variable stars. Astrophys. J. 2009, 675, 1254–1277. [Google Scholar] [CrossRef] [Green Version]
- Douglas, S.T.; Curtis, J.L.; Agüeros, M.A.; Cargile, P.A.; Brewer, J.M.; Meibom, S.; Jansen, T. K2 Rotation periods for low-mass Hyads and a quantitative comparison of the distribution of slow rotators in the Hyades and Praesepe. Astrophys. J. 2019, 879, 100. [Google Scholar] [CrossRef]
- Douglas, S.T.; Agüeros, M.A.; Covey, K.R.; Kraus, A. Poking the beehive from space: K2 rotation periods for Praesepe. Astrophys. J. 2017, 842, 83. [Google Scholar] [CrossRef] [Green Version]
- Curtis, J.L.; Agüeros, M.A.; Douglas, S.T.; Meibom, S. A temporary epoch of stalled spin-down for low-mass stars: Insights from NGC 6811with Gaia and Kepler. Astrophys. J. 2019, 879, 49. [Google Scholar] [CrossRef]
- Mellon, S.N.; Mamajek, E.E.; Oberst, T.E.; Pecaut, M.J. Angular momentum evolution of young stars in the nearby Scorpius–Centaurus OB Association. Astrophys. J. 2017, 844, 66. [Google Scholar] [CrossRef] [Green Version]
- Gagne, J.; David, T.J.; Mamajek, E.E.; Manon, A.W.; Faherty, J.K.; Bedard, A. The μ Tau Association: A 60 Myr old coeval group at 150 pc from the Sun. Astrophys. J. 2020, 903, 96. [Google Scholar] [CrossRef]
- Saylor, D.; Lepine, S.; Crossfield, I.; Petigura, E. Light-curve modulation of low-mass stars in K2. I. Identification of 481 fast rotators in the Solar Neighborhood. Astrophys. J. 2018, 155, 23. [Google Scholar]
- McQuillan, A.; Aigrain, S.; Mazeh, T. Stellar rotation periods of the Kepler objects of interest: A dearth of close-in planets around fast rotators. Mon. Not. R. Astron. Soc. 2013, 432, 1203–1216. [Google Scholar] [CrossRef] [Green Version]
- Newton, E.R.; Mondrik, N.; Irwin, J.; Winters, J.G.; Charbonneau, D. New rotation period measurements for M Dwarfs in the Southern Hemisphere: An abundance of slowly rotating, fully convective stars. Astron. J. 2018, 156, 217. [Google Scholar] [CrossRef]
- Baliunas, S.; Sokoloff, D.; Soon, W. Magnetic field and rotation in lower main-sequence stars: An empirical time-dependent magnetic Bode’s relation? Astrophys. J. 1996, 457, L99–L102. [Google Scholar] [CrossRef] [Green Version]
- Pecaut, M.C.; Mamajec, E.E. Intrinsic colors, temperatures, and bolometric corrections of pre-main-sequence stars. Astrophys. J. Supp. 2013, 208, 9. [Google Scholar] [CrossRef]
- Zombeck, M.V. Handbook of Space Astronomy and Astrophysics; Cambridge Univ. Press: Cambridge, UK, 2007; pp. 105–109. [Google Scholar]
- Leonard, P.J.T.; Merritt, D. The mass of the open star cluster M35 as derived from proper motions. Astrophys. J. 1989, 339, 195–208. [Google Scholar] [CrossRef]
- Barrado y Navascués, D.; Stauffer, J.R.; Bouvier, J.; Martín, E.L. From the top to the bottom of the main sequence: A complete mass function of the young open cluster M35. Astrophys. J. 2001, 546, 1006–1018. [Google Scholar] [CrossRef] [Green Version]
- Moraux, E.; Bouvier, J.; Stauffer, J.R.; Cuillandre, J.C. Brown dwarfs in the Pleiades cluster: Clues to the substellar mass function. Astron. Astrophys. 2003, 400, 891–902. [Google Scholar] [CrossRef] [Green Version]
- Moraux, E.; Kroupa, P.J.; Bouvier, J. The Pleiades mass function: Models versus observations. Astron. Astrophys. 2004, 426, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Bouvier, J.; Kendall, T.; Meeus, G.; Testi, L.; Moraux, E.; Stauffer, J.R.; James, D.; Cuillandre, J.-C.; Irwin, J.; McCaughrean, M.J.; et al. Brown dwarfs and very low mass stars in the Hyades cluster: A dynamically evolved mass function. Astron. Astrophys. 2008, 481, 661–672. [Google Scholar] [CrossRef]
- Williams, D.M.; Rieke, G.H.; Stauffer, J.R. The stellar mass function of praesepe. Astrophys. J. 1995, 445, 359–366. [Google Scholar] [CrossRef]
- Wang, W.; Boudreault, S.; Goldman, B.; Henning, T.; Caballero, J.A.; Bailer-Jones, C.A.L. The substellar mass function in the central region of the open cluster Praesepe from deep LBT observations. Astron. Astrophys. 2011, 531, A164. [Google Scholar] [CrossRef]
- Transtrum, M.K.; Machta, B.B.; Brown, K.S.; Daniels, B.C.; Myers, C.R.; Sethna, J.P. Perspective, sloppiness and emergent theories in physics, biology, and beyond. J. Chem. Phys. 2015, 143, 010901. [Google Scholar] [CrossRef] [PubMed]
- Groetsch, C.W. Inverse Problems: Activities for Undergraduates; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Kirsch, A. An Introduction to the Mathematical Theory of Inverse Problems; Springer: New York, NY, USA, 1966. [Google Scholar]
- Armbartsumian, V. On the derivation of the frequency function of space velocities of the stars from the observed radial velocities. Mon. Not. R. Astron. Soc. 1936, 96, 172–178. [Google Scholar]
- Criss, R.E.; Hofmeister, A.M. Density Profiles of 51 galaxies from parameter-free inverse models of their measured rotation curves. Galaxies 2020, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Apostol, T.M. Calculus: Multi-variable Calculus and Linear Algebra, with Applications to Differential Equations and Probability; Xerox College Publishing: Waltham, MA, USA, 1969. [Google Scholar]
- Jackson, R.J.; Jeffries, R.D. Chromospheric activity among fast-rotation M dwarfs in the open cluster NGC 2516. Mon. Not. R. Astron. Soc. 2010, 407, 465–478. [Google Scholar] [CrossRef] [Green Version]
- Douglas, S.T.; Agüeros, M.A.; Covey, K.R.; Cargile, P.A.; Barclay, T.; Cody, A.; Howell, S.B.; Kopytova, T. K2 rotation periods for low-mass Hyads and the implications for gyrochronology. Astrophys. J. 2016, 822, 47. [Google Scholar] [CrossRef] [Green Version]
- Cui, K.; Liu, J.; Yang, S.; Gao, Q.; Yang, H.; Soria, R.; He, L.; Wang, S.; Bai, Y.; Yang, F. Long rotation period main-sequence stars from Kepler SAP light curves. Mon. Not. R. Astron. Soc. 2019, 413, 2218–2234. [Google Scholar] [CrossRef] [Green Version]
- McQuillan, A.; Mazeh, T.; Aigrain, S. Rotation periods of 34,030 Kepler main-sequence stars: The full autocorrelation sample. Astrophys. J. Suppl. Ser. 2014, 211, 24. [Google Scholar] [CrossRef] [Green Version]
- Affer, L.; Micela, G.; Favata, F.; Flaccomio, E.; Bouvier, J. Rotation in NGC 2264: A study based on CoRoT photometric observations. Mon. Not. R. Astron. Soc. 2013, 430, 1433–1446. [Google Scholar] [CrossRef] [Green Version]
- Scholz, A.; Eislöffel, J.; Mundt, R. Long-term monitoring in IC4665: Fast rotation and weak variability in very low mass objects. Astron. Astrophys. 2009, 400, 1548–1562. [Google Scholar] [CrossRef] [Green Version]
- James, D.J.; Barnes, S.A.; Meibom, S.; Lockwood, G.W.; Levine, S.E.; Deliyannis, C.; Platais, I.; Steinhauer, A.; Hurley, B.K. New rotation periods in the open cluster NGC 1039 (M34), and a derivation of its gyrochronology age. Astron. Astrophys. 2010, 515, A100. [Google Scholar] [CrossRef]
- Reiners, A.; Joshi, N.; Goldman, B. A catalog of rotation and activity in early-M stars. Astrophys. J. 2012, 143, 93. [Google Scholar] [CrossRef] [Green Version]
- Esselstein, R.; Aigrain, S.; Vanderburg, A.; Smith, J.C.; Meibom, S.; Van Saders, J.; Mathieu, R. The K2 M67 study: Establishing the limits of stellar rotation period measurements in M67 with K2 campaign 5 cata. Astrophys. J. 2018, 859, 167. [Google Scholar] [CrossRef] [Green Version]
- Finlay, W.H. Concise Catalog of Deep-Sky Objects; Springer: London, UK, 2003. [Google Scholar]
- Kraft, R.P. Studies of Stellar Rotation. V. The dependence of rotation on age among solar-type stars. Astrophys. J. 1967, 150, 551–571. [Google Scholar] [CrossRef]
- Soderblom, F.T. Rotational studies of late-type stars. II—Ages of solar-type stars and the rotational history of the Sun. Astrophys. J. Suppl. Ser. 1982, 53, 1–15. [Google Scholar] [CrossRef]
- Barnes, S.A. On the rotational evolution of solar- and late-type stars, its magnetic origins, and the possibility of stellar gyrochronology. Astrophys. J. 2003, 586, 464–479. [Google Scholar] [CrossRef] [Green Version]
- Barnes, S.A. Ages for illustrative field stars using gyrochronology: Viability, limitations, and errors. Astrophys. J. 2007, 669, 1167–1189. [Google Scholar] [CrossRef] [Green Version]
- Cargile, P.A.; James, D.L.; Pepper, J.; Kuhn, R.B.; Siverd, R.; Stassun, K.G. Evaluating gyrochronology on the zero-age-main-sequence: Rotation periods in the southern open cluster Blanco 1 from the Kelt-south survey. Astrophys. J. 2014, 782, 29. [Google Scholar] [CrossRef] [Green Version]
- Epstein, C.R.; Pinsonneault, M.H. How good a clock is rotation? The stellar rotation–mass–age relationship for old field stars. Astrophys. J. 2014, 780, 159. [Google Scholar] [CrossRef] [Green Version]
- Twarog, B.A.; Carraro, G.; Anthony-Twarog, B.J. Evidence for extended star formation in the old, metal-rich open cluster, NGC 6791? Astrophys. J. Lett. 2011, 727, L7. [Google Scholar] [CrossRef]
- Geisler, D.; Villanova, S.; Carraro, G.; Pilachowski, C.; Cummings, J.; Johnson, C.I.; Bresolin, F. The unique Na: Abundance distribution in NGC 6791: The first open(?) cluster with multiple populations. Astrophys. J. Lett. 2012, 756, L40. [Google Scholar] [CrossRef] [Green Version]
- Van Saders, J.L.; Pinsonneault, M.H.; Barbieri, M. Forward modeling of the Kepler stellar rotation period distribution: Interpreting periods from mixed and biased stellar populations. Astrophys. J. 2019, 872, 128. [Google Scholar] [CrossRef] [Green Version]
- Bevington, P.R. Data Reduction and Error Analysis for the Physical Sciences; McGraw-Hill: New York, NJ, USA, 1969. [Google Scholar]
- Collier Cameron, A.; Davidson, V.A.; Hebb, L.; Skinner, G.; Anderson, D.R.; Christian, D.J.; Clarkson, W.I.; Enoch, B.; Irwin, J.; Joshi, Y.; et al. The main-sequence rotation–Colour relation in the Coma Berenices open cluster. Mon. Not. R. Astron. Soc. 2009, 400, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Kovács, G.; Hartman, J.D.; Bakos, G.A.; Quinn, S.N.; Penev, K.; Latham, D.W.; Bhatti, W.; Csubry, Z.; de Val-Borro, M. Stellar rotation periods in planet hosting open cluster Praesepe. Mon. Not. R. Astron. Soc. 2014, 442, 2081–2093. [Google Scholar] [CrossRef] [Green Version]
- Hofmeister, A.M.; Criss, R.E. A thermodynamic model for formation of the Solar System via 3-dimensional collapse of the dusty nebula. Planet. Space Sci. 2012, 62, 111–131. [Google Scholar] [CrossRef]
- Hofmeister, A.M.; Criss, R.E. Spatial and symmetry constraints as the basis of the virial theorem and astrophysical implications. Can. J. Phys. 2016, 94, 380–388. [Google Scholar] [CrossRef]
- Delorme, P.; Collier Cameron, A.; Hebb, L.; Rostron, J.; Lister, T.A.; Norton, A.J.; Pollacco, S.; West, R.G. Stellar rotation in the Hyades and Praesepe: Gyrochronology and braking time-scale. Mon. Not. R. Astron. Soc. 2011, 413, 2218–2234. [Google Scholar] [CrossRef] [Green Version]
- Meibom, S.; Barnes, S.A.; Latham, D.W.; Batalha, N.; Borucki, W.J.; Koch, D.G.; Basri, G.; Walkowicz, L.M.; Janes, K.A.; Jenkins, J.; et al. The Kepler cluster study: Stellar rotation in NGC 6811. Astrophys. J. Lett. 2011, 733, L9. [Google Scholar] [CrossRef]
- Bouvier, J.; Forestini, M.; Allain, S. The angular momentum evolution of low-mass stars. Astron. Astrophys. 1997, 326, 1023–1043. [Google Scholar]
- Reiners, A.; Mohanty, S. Radius-dependent angular momentum evolution in low-mass stars. I. Astrophys. J. 2012, 746, 43. [Google Scholar] [CrossRef] [Green Version]
- SILSO. World Data Center—Sunspot Number and Long-Term Solar Observations from the Royal Observatory of Belgium, on-Line Sunspot Number Catalogue. Covering 1749 to 2020. Available online: http://www.sidc.be/silso/datafiles (accessed on 16 May 2020).
- Hoyt, D.V.; Schatten, K.H. Group sunspot numbers: A new solar activity reconstruction. Part 2. Solar Phys. 1998, 181, 491–512. [Google Scholar] [CrossRef]
- Tritton, D.J. Physical Fluid Dynamics; Van Nostrand Reinhold Co.: New York, NY, USA, 1977. [Google Scholar]
- Fossat, E.; Boumier, P.; Fossat, E.; Corbard, T.; Provost, J.; Salabert, D.; Schmider, F.X.; Gabriel, A.H.; Grec, G.; Renaud, C.; et al. Asymptotic g modes: Evidence for a rapid rotation of the solar core. Astron. Astrophys. 2017, 604, A40. [Google Scholar] [CrossRef] [Green Version]
- Karoff, C.; Metcalfe, T.S.; Chaplin, W.J.; Elsworth, Y.; Kjeldsen, H.; Arentoft, T.; Buzasi, D. New rotation periods in the open cluster NGC 1039 (M 34), and a derivation of its gyrochronology age. Mon. Not. R. Astron. Soc. 2009, 399, 914–923. [Google Scholar] [CrossRef] [Green Version]
- Hofmeister, A.M.; Criss, R.E. Implications of geometry and the theorem of Gauss on Newtonian gravitational systems and a caveat regarding Poisson’s equation. Galaxies 2017, 5, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Slettebak, A. On the axial rotation of brighter O and B stars. Astrophys. J. 1949, 110, 498–514. [Google Scholar] [CrossRef]
- Ghez, A.M.; Duchêne, G.; Matthews, K.; Hornstein, S.D.; Tanner, A.; Larkin, J.; Morris, M.; Becklin, E.E.; Salim, S.; Kremenek, T.; et al. The first measurement of spectral lines in a short-period star bound to the galaxy’s central black hole: A paradox of youth. Astrophys. J. 2003, 586, L127–L131. [Google Scholar] [CrossRef]
Object | No. Data | Model Age Ma | Distance pc | Total Stars | Star Types | M/MSun | Reference; Notes |
---|---|---|---|---|---|---|---|
Open clusters probed in Kepler missions | |||||||
NGC 6530 | 244 | 1 | 1330 | 850 | M-F | √ | [13]; In Lagoon nebula |
NGC 2264 | 405 | 2 | 800 | 1000 | M-K | R-I | [14]; Has nebulosity |
Cep OB3b | 704 | 4–5 | 580 | 1000 | M-F | ¶ | [15]; Molecular cloud; O, B stars |
NGC 2362 | 251 | 5 | 1480 | >500 | M-G | √ | [16]; Near a nebula |
NGC 869 | 586 | 13 | 2300 | 3700 | M0-F | √ | [17]; B stars |
NGC 2547 | 176 | 40 | 433 | >300 | M-G | √ | [18]; B-types |
M50 | 812 | 70 | 1000 | ~15,000 | M-F | √ | [19]; White dwarfs |
Pleiades | 383 768 132 | 100 | 135 | 9100 | M-F M-A ‡ M-K | √ V-K § √ | [20] [21] [22]; Be stars, dust, white dwarfs |
M35 | 421 | 150 | 900 | ~24,000 | M-A | B-V | [23]; White dwarfs |
NGC 2516 | 308 + 247 | 150 | 346 | >1300 | M-F M | B-V √ | [24] [25]; White dwarfs |
M34 | 120 | 225 | 470 | 400 | K-G | B-V | [26]; White dwarfs |
M37 | 575 | 350 | 1400 | 1500 | M-F | B-V | [27]; White dwarfs |
Hyades | 129 † | 625 | 46 | 500 | M-G | √ | [28]; White dwarfs |
Praesepe | 677 | 650 | 170 | 1000 | M-G ‡ | √ | [29]; White dwarfs |
NGC 6811 | 171 || | 1000 | 1215 | >1000 | K-F5 || | √ | [30]; Red giants |
Various Kepler missions of nearby stars and associations | |||||||
Sco-Cen OB Assoc. | 162 | 10–20 | 120–145 | >260 | M0-F3 | √ | [31]; Pre-main sequence; O, B stars |
μ Tau Assoc. | 201 | 60 | 150 | >500 | M5-B2 | # | [32]; Pre-main sequence; O, B stars |
Solar Neighborhood | 481 | n.a. | <500 | ~26,000 | M-G | # | [33] |
Field M stars | 1570 | n.a. | <120 | >1600 | M | √ | [34] |
Ground-based measurements | |||||||
South Hemisp | 281 | n.a. | <400 | >3000 | M | √ | [35] |
Mt.Wilson | 100 | n.a. | 32–1646 | >30,000 | K-F | B-V | [36] |
Model | Assumptions |
---|---|
Gyrochronology | Coeval (catastrophic) formation of dwarf stars occurs in any open cluster. |
The initial spin rate of stars is random. | |
A physical law for spin decay is independent of star mass but depends on spin values. | |
Star age can be inferred from a rate law that describes only the slowest dwarf stars (the I-trend), whereas the rate law describing the fast stars (the C-trend) is not relevant. | |
A t ½ dependence is assumed for the I-trend, which rests on model ages of clusters. | |
The I- and C-trends can be discerned visually from period vs. a temperature-color index scatter plot. | |
That most stars fall between these two trends and are not described by either rate law is not germane. | |
Analytical inverse model (this paper) | Steady-state production approximates formation of sub-solar mass stars. |
A physical law for spin decay exists, and may or may not vary with star mass. |
Object | Power (n) | Mean G Age | Max G Age | No. Gs | Min Age | Cluster Age |
---|---|---|---|---|---|---|
NGC 6530 | 1.04 ± 0.14 | 3.0 | 4.3 | 46 | 0.3 | 6.0 |
NGC 2264 | 1.10 ± 0.24 | 3.2 a | 4.1 a | 29 a | 2 | 6.2 |
Cep OB3b | 1.0 ± 0.4 | 3.2 | 4 | 57 | 1.7 | 6.2 |
NGC 2362 | 1.16 ± 0.36 | 3.3 | 4.6 | 73 | 1.2 | 5.6 |
NGC 869 | 1.01 ± 0.23 | 2.6 | 4.2 | 227 | 0 | 5.9 |
NGC 2547 | 0.94 ± 0.06 | 3.1 | 4.2 | 26 | 0.8 | 5.9 |
M50 | 1.02 ± 0.50 | 2.9 | 4.5 | 62 | 0 | 5.9 |
Pleiades, M-F † | 1.22 ± 0.16 | 2.9 | 4 | 129 | 0.7 | 5.9 |
Pleiades, mostlyM’s ‡ | 1.03 ± 0.17 ¶ | 3.1 | 3.7 | 76 | 0.4 | 6.0 |
M35 | 0.83 ± 0.17 | 2.8 | 4.5 | 217 | 0 | 5.8 |
NGC 2516 | 1.18 ± 0.25 | 3.2 | 3.7 | 101 | 1.0 | 6.2 |
NGC 2516 309 M’s | 1.19 ± 0.04 ¶ | n.a. | n.a. | n.a. | n.a. | n.a. |
M34 | 1.12 ± 0.2 * | 3.3 | 4.0 | 20 | 0.1 | 6.3 |
M37 All 575 | 1.55 ± 0.3 | 3.5 | 4.2 | 77 | 1.8 | 6.5 |
M37 240 M’s | 1.30 ± 0.2 ¶ | n.a. | n.a. | n.a. | 1.8 | n.a. |
Coma B. # | n.a. | 3.7 | 4 | 29 | 3.5 | 6.7 |
Hyades | 1.07 ± 0.02 | 3.8 | 4 | 21 | 1.9 | 6.8 |
Praesepe | 1.16 ± 0.02 | 3.4 | 4.7 | 114 | 0.3 | 6.4 |
NGC 6811 | 1.5 ± 0.3 * | 3.9 | 4.2 | 67 | 1.9 | 6.9 |
M67 § | n.a. | 4.7 | 5 | 30 | 4.2 | 7.7 |
Averages | 1.07 ± 0.12 * ¶ | 3.3 ± 0.5 | 4.2 ± 0.3 | 76 ± 62 | 1.7 ± 2 | 6.3 ± 0.5 |
Sco-Cen OB Assoc. | 1.09 ± 0.33 | 2.5 | 3.8 | 47 | 0.2 | 5.5 |
μ Tau association | 0.94 ± 0.06 | ? | ? | ? | 0 | <5.5 |
Solar Neighborhood | 1.12 ± 0.20 | ? | ? | ? | 1.5 | n.a. |
Field M’s | 1.3 ± 0.3 | n.a. | n.a. | 0 | 1.5 | ~6.7 |
South Hemisphere | 1.22 ± 0.45 | n.a. | n.a. | 0 | 2 | ~8 |
Mt. Wilson | 1.11 ± 0.36 | 4.1 | 5.3 | 62 | 2.4 | ~6.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Criss, R.E.; Hofmeister, A.M. Quantification of Sub-Solar Star Ages from the Symmetry of Conjugate Histograms of Spin Period and Angular Velocity. Symmetry 2021, 13, 1519. https://doi.org/10.3390/sym13081519
Criss RE, Hofmeister AM. Quantification of Sub-Solar Star Ages from the Symmetry of Conjugate Histograms of Spin Period and Angular Velocity. Symmetry. 2021; 13(8):1519. https://doi.org/10.3390/sym13081519
Chicago/Turabian StyleCriss, Robert E., and Anne M. Hofmeister. 2021. "Quantification of Sub-Solar Star Ages from the Symmetry of Conjugate Histograms of Spin Period and Angular Velocity" Symmetry 13, no. 8: 1519. https://doi.org/10.3390/sym13081519
APA StyleCriss, R. E., & Hofmeister, A. M. (2021). Quantification of Sub-Solar Star Ages from the Symmetry of Conjugate Histograms of Spin Period and Angular Velocity. Symmetry, 13(8), 1519. https://doi.org/10.3390/sym13081519