Dynamics of Hyperbolically Symmetric Fluids
Abstract
:1. Introduction
2. The General Setup of the Problem: Notation, Variables and Equations
2.1. Einstein Equations and Conservation Laws
2.2. Kinematical Variables
2.3. The Weyl Tensor
2.4. The Mass Function
3. The Transport Equation
4. The Structure Scalars and the Complexity Factor
5. The Quasi-Homologous Condition
6. The Exterior Spacetime and Junction Conditions
7. Some Models
7.1. Non-Dissipative Case
7.1.1. ,
7.1.2. Geodesic Solutions
7.2. Dissipative Case with
7.2.1. X Is a Separable Function
7.2.2.
7.2.3.
8. Discussion and Conclusions
- The energy density is necessarily negative.
- The fluid cannot fill the central region.
- The Tolman condition for thermodynamic equilibrium implies in this case the presence of a positive temperature gradient.
- The thermal modification of the inertial mass density reported for the spherically symmetric case in [24], produces an effect that is similar to the one obtained in this latter case (to enhance the tendency to expansion) but comes about through different terms in the equation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Conservation Laws = 0
References
- Herrera, L.; Prisco, A.D.; Ospino, J. Hyperbolically symmetric static fluids: A general study. Phys. Rev. D 2021, 103, 024037. [Google Scholar] [CrossRef]
- Herrera, L.; Witten, L. An alternative approach to the static spherically symmetric vacuum global solutions to the Einstein’s equations. Adv. High Energy Phys. 2018, 2018, 8839103. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Prisco, A.D.; Ospino, J.; Witten, L. Geodesics of the hyperbolically symmetric black hole. Phys. Rev. D 2020, 101, 064071. [Google Scholar] [CrossRef] [Green Version]
- Rosen, N. The nature of Schwarzschild singularity. In Relativity, Proceedings of the Relativity Conference in the Midwest, Cincinnati, OH, USA, 2–6 June 1969; Carmeli, M., Fickler, S.I., Witten, L., Eds.; Plenum Press: New York, NY, USA, 1970; pp. 229–258. [Google Scholar]
- Rindler, W. Relativity. Special, General and Cosmological; Oxford University Press: New York, NY, USA, 2001; pp. 260–261. [Google Scholar]
- Caroll, S. Spacetime and Geometry. An Introduction to General Relativity; Addison Wesley: San Francisco, CA, USA, 2004; pp. 218–246. [Google Scholar]
- Harrison, B.K. Exact Three-Variable Solutions of the Field Equations of General Relativity. Phys. Rev. 1959, 116, 1285–1296. [Google Scholar] [CrossRef]
- Stephani, H.; Kramer, D.; MacCallum, M.; Honselaers, C.; Herlt, E. Exact Solutions to Einsteins Field Equations, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Gaudin, M.; Gorini, V.; Kamenshchik, A.; Moschella, U.; Pasquier, V. Gravity of a static massless scalar field and a limiting Schwarzschild-like geometry. Int. J. Mod. Phys. D 2006, 15, 1387–1399. [Google Scholar] [CrossRef] [Green Version]
- Rizzi, L.; Cacciatori, S.L.; Gorini, V.; Kamenshchik, A.; Piattella, O.F. Dark matter effects in vacuum spacetime. Phys. Rev. D 2010, 82, 027301. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S.N.; Mimoso, J.P. Possibility of hyperbolic tunneling. Phys. Rev. D 2010, 82, 044034. [Google Scholar] [CrossRef] [Green Version]
- Kamenshchik, A.Y.; Pozdeeva, E.O.; Starobinsky, A.A.; Tronconi, A.; Vardanyan, T.; Venturi, G.; Yu, S. Verno. Duality between static spherically or hyperbolically symmetric solutions and cosmological solutions in scalar-tensor gravity. Phys. Rev. D 2018, 98, 124028. [Google Scholar] [CrossRef] [Green Version]
- Madler, T. On the affine-null metric formulation of General Relativity. Phys. Rev. D 2019, 99, 104048. [Google Scholar] [CrossRef] [Green Version]
- Maciel, A.; Delliou, M.L.; Mimoso, J.P. New perspectives on the TOV equilibrium from a dual null approach. Class. Quantum Gravity 2020, 37, 125005. [Google Scholar] [CrossRef]
- Herrera, L.; Prisco, A.D.; Ospino, J. Quasi–homologous evolution of self–gravitating systems with vanishing complexity factor. Eur. Phys. J. C 2020, 80, 631. [Google Scholar] [CrossRef]
- Misner, C.; Sharp, D. Relativistic Equations for Adiabatic, Spherically Symmetric Gravitational Collapse. Phys. Rev. 1964, 136, B571. [Google Scholar] [CrossRef]
- Herrera, L.; Santos, N.O.; Wang, A. Shearing expansion-free spherical anisotropic fluid evolution. Phys. Rev. D 2008, 78, 084026-10. [Google Scholar] [CrossRef] [Green Version]
- Israel, W. Nonstationary irreversible thermodynamics: A causal relativistic theory. Ann. Phys. 1976, 100, 310–331. [Google Scholar] [CrossRef]
- Israel, W.; Stewart, J.M. Thermodynamics of nonstationary and transient effects in a relativistic gas. Phys. Lett. A 1976, 58, 213–215. [Google Scholar] [CrossRef]
- Israel, W.; Stewart, J.M. Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 1979, 118, 341–372. [Google Scholar] [CrossRef]
- Eckart, C. The Thermodynamics of Irreversible Processes. III. Relativistic Theory of the Simple Fluid. Phys. Rev. 1940, 58, 919. [Google Scholar] [CrossRef]
- Triginer, J.; Pavón, D. Heat transport in an inhomogeneous spherically symmetric universe. Class. Quantum Gravity 1995, 12, 689–698. [Google Scholar] [CrossRef]
- Tolman, R.C. On the weight of heat and thermal equilibrium in general relativity. Phys. Rev. 1930, 35, 904–924. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Prisco, A.D.; Hernández-Pastora, J.L.; Martín, J.; Martínez, J. Thermal conduction in systems out of hydrostatic equilibrium. Class. Quantum. Gravity 1997, 14, 2239–2247. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L. The inertia of heat and its role in the dynamics of dissipative collapse. Int. J. Mod. Phys. D 2006, 15, 2197–2202. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L. New definition of complexity for self–gravitating fluid distributions: The spherically symmetric static case. Phys. Rev. D 2018, 97, 044010. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Ospino, J.; Prisco, A.D.; Fuenmayor, E.; Troconis, O. Structure and evolution of self-gravitating objects and the orthogonal splitting of the Riemann tensor. Phys. Rev. D 2009, 79, 064025. [Google Scholar] [CrossRef] [Green Version]
- Bel, L. Sur la radiation gravitationelle. C. R. Acad. Sci. Paris 1958, 247, 1094–1096. [Google Scholar]
- Bel, L. Radiation states and the problem of energy in general relativity. Gen. Rel. Gravit. 2000, 32, 2047–2078. [Google Scholar] [CrossRef]
- Bel, L. Introduction d’un tenseur du quatrieme order. C. R. Acad. Sci. Paris 1959, 248, 1297–1300. [Google Scholar]
- Gomez-Lobo, A.G.-P. Dynamical laws of superenergy in general relativity. Class. Quantum Gravity 2008, 25, 015006. [Google Scholar] [CrossRef]
- Herrera, L.; Prisco, A.D.; Ospino, J. Definition of complexity for dynamical spherically symmetric dissipative self–gravitating fluid distributions. Phys. Rev. D 2018, 98, 104059. [Google Scholar] [CrossRef] [Green Version]
- Darmois, G. Mémorial des Sciences Mathématiques; Gauthier-Villars: Paris, France, 1927; p. 25. [Google Scholar]
- Israel, W. Singular hypersurfaces and thin shells in general relativity. Il Nuovo Cimento B 1966, 44, 1–14. [Google Scholar] [CrossRef]
- Herrera, L.; Denmat, G.L.; Santos, N.O. Cavity evolution in relativistic self–gravitating fluids. Class. Quantum Gravity 2010, 27, 135017. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Lobo, F.S.N.; Mimoso, J.P. Energy conditions in modified gravity. Phys. Lett. B 2014, 730, 280–283. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Lobo, F.S.N.; Mimoso, J.P. Generalized energy conditions in extended theories of gravity. Phys. Rev. D 2015, 91, 124019. [Google Scholar] [CrossRef] [Green Version]
- Barcelo, C.; Visser, M. Twilight for the Energy Conditions? Int. J. Mod. Phys. D 2002, 11, 1553–1560. [Google Scholar] [CrossRef] [Green Version]
- Kontou, E.A.; Sanders, K. Energy conditions in general relativity and quantum field theory. Class. Quantum Gravity 2020, 37, 193001. [Google Scholar] [CrossRef]
- Pavsic, M. On negative energies, strings, branes, and braneworlds: A review of novel approaches. Int. J. Mod. Phys. A 2020, 35, 2030020. [Google Scholar] [CrossRef]
- Kopteva, E.; Bormotova, I.; Churilova, M.; Stuchlik, Z. Accelerated Expansion of the Universe in the Model with Nonuniform Pressure. Astrophys. J. 2019, 887, 98. [Google Scholar] [CrossRef]
- Thirukkanesh, S.; Maharaj, S.D. Radiating relativistic matter in geodesic motion. J. Math. Phys. 2009, 50, 022502. [Google Scholar] [CrossRef] [Green Version]
- Thirukkanesh, S.; Maharaj, S.D. Mixed potentials in radiative stellar collapse. J. Math. Phys. 2010, 51, 072502. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, B. All solutions for geodesic anisotropic spherical collapse with shear and heat radiation. Astrophys. Space Sci. 2016, 361, 18. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, B. A different approach to anisotropic spherical collapse with shear and heat radiation. Int. J. Mod. Phys. D 2016, 25, 1650049. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, L.; Di Prisco, A.; Ospino, J. Dynamics of Hyperbolically Symmetric Fluids. Symmetry 2021, 13, 1568. https://doi.org/10.3390/sym13091568
Herrera L, Di Prisco A, Ospino J. Dynamics of Hyperbolically Symmetric Fluids. Symmetry. 2021; 13(9):1568. https://doi.org/10.3390/sym13091568
Chicago/Turabian StyleHerrera, Luis, Alicia Di Prisco, and Justo Ospino. 2021. "Dynamics of Hyperbolically Symmetric Fluids" Symmetry 13, no. 9: 1568. https://doi.org/10.3390/sym13091568
APA StyleHerrera, L., Di Prisco, A., & Ospino, J. (2021). Dynamics of Hyperbolically Symmetric Fluids. Symmetry, 13(9), 1568. https://doi.org/10.3390/sym13091568