Blue Phase Liquid Crystals with Tailored Crystal Orientation for Photonic Applications
Abstract
:1. Introduction
2. Crystal Plane Orientation-Controlling Technologies
2.1. Thermal Control
2.2. Use of the Alignment Layer
2.3. Application of Electric Field
2.4. Use of Nanopatterned Substrates
3. Azimuthal Orientation-Controlling Technologies of BPs
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kikuchi, H. Liquid crystalline blue phases. Struct. Bond. 2007, 128, 99–117. [Google Scholar]
- Higashiguchi, K.; Yasui, K.; Kikuchi, H. Direct observation of polymer-stabilized blue phase I structure with confocal laser scanning microscope. J. Am. Chem. Soc. 2008, 130, 6326–6327. [Google Scholar] [CrossRef]
- Tanaka, S.; Yoshida, H.; Kawata, Y.; Kuwahara, R.; Nishi, R.; Ozaki, M. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy. Sci. Rep. 2015, 5, 16180. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Anucha, K.; Ogawa, Y.; Kawata, Y.; Ozaki, M.; Fukuda, J.-I.; Kikuchi, H. Bragg reflection band width and optical rotatory dispersion of cubic blue-phase liquid crystals. Phys. Rev. E 2016, 94, 042703. [Google Scholar] [CrossRef]
- Belyakov, V.; Demikhov, E.; Dmitrienko, V.; Dolganov, V. Optical activity, transmission spectra, and structure of blue phases of liquid crystals. J. Exp. Theor. Phys. 1985, 89, 2035–2051. [Google Scholar]
- Hur, S.T.; Lee, B.R.; Gim, M.J.; Park, K.W.; Song, M.H.; Choi, S.W. Liquid-Crystalline Blue Phase Laser with Widely Tunable Wavelength. Adv. Mater. 2013, 25, 3002–3006. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q. Stimuli-directing self-organized 3D liquid-crystalline nanostructures: From materials design to photonic applications. Adv. Funct. Mater. 2016, 26, 10–28. [Google Scholar] [CrossRef]
- Chen, C.-W.; Li, C.-C.; Jau, H.-C.; Yu, L.-C.; Hong, C.-L.; Guo, D.-Y.; Wang, C.-T.; Lin, T.-H. Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals. ACS Photonics 2015, 2, 1524–1531. [Google Scholar] [CrossRef]
- Du, X.-W.; Hou, D.-S.; Li, X.; Sun, D.-P.; Lan, J.-F.; Zhu, J.-L.; Ye, W.-J. Symmetric continuously tunable photonic band gaps in blue-phase liquid crystals switched by an alternating current field. ACS Appl. Mater. Interfaces 2019, 11, 22015–22020. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.-Y.; Chen, C.-W.; Li, C.-C.; Jau, H.-C.; Lin, K.-H.; Feng, T.-M.; Wang, C.-T.; Bunning, T.J.; Khoo, I.C.; Lin, T.-H. Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction. Nat. Mater. 2020, 19, 94–101. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Z.; Liu, Y.; Zhang, X.; Zheng, Z.; Luo, D.; Sun, X. Electrically switchable, hyper-reflective blue phase liquid crystals films. Adv. Opt. Mater. 2018, 6, 1700891. [Google Scholar] [CrossRef]
- Zhou, K.; Bisoyi, H.K.; Jin, J.Q.; Yuan, C.L.; Liu, Z.; Shen, D.; Lu, Y.Q.; Zheng, Z.G.; Zhang, W.; Li, Q. Light-Driven Reversible Transformation between Self-Organized Simple Cubic Lattice and Helical Superstructure Enabled by a Molecular Switch Functionalized Nanocage. Adv. Mater. 2018, 30, 1800237. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Li, C.; Xiao, J.; Ding, H.; Liu, X.; Zhang, X.; He, W.; Yang, H. Light-controllable reflection wavelength of blue phase liquid crystals doped with azobenzene-dimers. Chem. Commun. 2013, 49, 10097–10099. [Google Scholar] [CrossRef]
- Yan, J.; Wu, S.-T.; Cheng, K.-L.; Shiu, J.-W. A full-color reflective display using polymer-stabilized blue phase liquid crystal. Appl. Phys. Lett. 2013, 102, 081102. [Google Scholar] [CrossRef]
- Yokoyama, S.; Mashiko, S.; Kikuchi, H.; Uchida, K.; Nagamura, T. Laser emission from a polymer-stabilized liquid-crystalline blue phase. Adv. Mater. 2006, 18, 48–51. [Google Scholar] [CrossRef]
- Cao, W.; Munoz, A.; Palffy-Muhoray, P.; Taheri, B. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nat. Mater. 2002, 1, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Petriashvili, G.; Chanishvili, A.; Zurabishvili, T.; Chubinidze, K.; Ponjavidze, N.; De Santo, M.P.; Bruno, M.D.L.; Barberi, R. Temperature tunable omnidirectional lasing in liquid crystal blue phase microspheres. OSA Contin. 2019, 2, 3337–3342. [Google Scholar] [CrossRef]
- Kim, K.; Hur, S.-T.; Kim, S.; Jo, S.-Y.; Lee, B.R.; Song, M.H.; Choi, S.-W. A well-aligned simple cubic blue phase for a liquid crystal laser. J. Mater. Chem. C 2015, 3, 5383–5388. [Google Scholar] [CrossRef]
- Bukusoglu, E.; Wang, X.; Martinez-Gonzalez, J.A.; de Pablo, J.J.; Abbott, N.L. Stimuli-responsive cubosomes formed from blue phase liquid crystals. Adv. Mater. 2015, 27, 6892–6898. [Google Scholar] [CrossRef]
- Martínez-González, J.A.; Zhou, Y.; Rahimi, M.; Bukusoglu, E.; Abbott, N.L.; de Pablo, J.J. Blue-phase liquid crystal droplets. Proc. Natl. Acad. Sci. USA 2015, 112, 13195–13200. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Wang, C.-T.; Yu, C.-P.; Lin, T.-H. Polarization independent Fabry-Pérot filter based on polymer-stabilized blue phase liquid crystals with fast response time. Opt. Express 2011, 19, 25441–25446. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Tu, H.-Y. Optical polarization states of a liquid-crystal blue phase II. OSA Contin. 2019, 2, 478–485. [Google Scholar] [CrossRef]
- Yan, J.; Li, Y.; Wu, S.-T. High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal. Opt. Lett. 2011, 36, 1404–1406. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.-J.; Ji, W.; Cui, G.-X.; Wei, B.-Y.; Hu, W.; Lu, Y.-Q. Fast switchable optical vortex generator based on blue phase liquid crystal fork grating. Opt. Mater. Express 2014, 4, 2535–2541. [Google Scholar] [CrossRef]
- Kikuchi, H.; Yokota, M.; Hisakado, Y.; Yang, H.; Kajiyama, T. Polymer-stabilized liquid crystal blue phases. Nat. Mater. 2002, 1, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Castles, F.; Day, F.; Morris, S.; Ko, D.; Gardiner, D.; Qasim, M.; Nosheen, S.; Hands, P.; Choi, S.; Friend, R. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications. Nat. Mater. 2012, 11, 599–603. [Google Scholar] [CrossRef]
- Yoshida, H.; Tanaka, Y.; Kawamoto, K.; Kubo, H.; Tsuda, T.; Fujii, A.; Kuwabata, S.; Kikuchi, H.; Ozaki, M. Nanoparticle-stabilized cholesteric blue phases. Appl. Phys. Express 2009, 2, 121501. [Google Scholar] [CrossRef]
- Draude, A.P.; Kalavalapalli, T.Y.; Iliut, M.; McConnell, B.; Dierking, I. Stabilization of liquid crystal blue phases by carbon nanoparticles of varying dimensionality. Nanoscale Adv. 2020, 2, 2404–2409. [Google Scholar] [CrossRef]
- Hur, S.-T.; Gim, M.-J.; Yoo, H.-J.; Choi, S.-W.; Takezoe, H. Investigation for correlation between elastic constant and thermal stability of liquid crystalline blue phase I. Soft Matter 2011, 7, 8800–8803. [Google Scholar] [CrossRef]
- Yoshizawa, A.; Sato, M.; Rokunohe, J. A blue phase observed for a novel chiral compound possessing molecular biaxiality. J. Mater. Chem. 2005, 15, 3285–3290. [Google Scholar] [CrossRef]
- Ojima, M.; Noma, T.; Asagi, H.; Fujii, A.; Ozaki, M.; Kikuchi, H. Pinning effect of mixed cellulose ester membrane on appearance of cholesteric blue phases. Appl. Phys. Express 2009, 2, 021502. [Google Scholar] [CrossRef]
- Noma, T.; Ojima, M.; Asagi, H.; Kawahira, Y.; Fujii, A.; Ozaki, M.; Kikuchi, H. Effects of polymer network surfaces on expansion of cholesteric blue phases temperature. e-J. Surf. Sci. Nanotechnol. 2008, 6, 17–20. [Google Scholar] [CrossRef]
- Lin, J.-D.; Ho, Y.-L.D.; Chen, L.; Lopez-Garcia, M.; Jiang, S.-A.; Taverne, M.P.; Lee, C.-R.; Rarity, J.G. Microstructure-stabilized blue phase liquid crystals. ACS Omega 2018, 3, 15435–15441. [Google Scholar] [CrossRef] [PubMed]
- Coles, H.J.; Pivnenko, M.N. Liquid crystal ‘blue phases’ with a wide temperature range. Nature 2005, 436, 997–1000. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, W.; He, W.; Yang, Z.; Wang, D.; Cao, H. Liquid crystalline blue phase materials with three-dimensional nanostructures. J. Mater. Chem. C 2019, 7, 13352–13366. [Google Scholar] [CrossRef]
- Yoshida, H.; Kobashi, J. Flat optics with cholesteric and blue phase liquid crystals. Liq. Cryst. 2016, 43, 1909–1919. [Google Scholar] [CrossRef]
- Cho, S.; Takahashi, M.; Fukuda, J.-I.; Yoshida, H.; Ozaki, M. Directed self-assembly of soft 3D photonic crystals for holograms with omnidirectional circular-polarization selectivity. Commun. Mater. 2021, 2, 39. [Google Scholar] [CrossRef]
- Chen, H.-S.; Lin, Y.-H.; Wu, C.-H.; Chen, M.; Hsu, H.-K. Hysteresis-free polymer-stabilized blue phase liquid crystals using thermal recycles. Opt. Mater. Express 2012, 2, 1149–1155. [Google Scholar] [CrossRef]
- Chen, C.-W.; Hou, C.-T.; Li, C.-C.; Jau, H.-C.; Wang, C.-T.; Hong, C.-L.; Guo, D.-Y.; Wang, C.-Y.; Chiang, S.-P.; Bunning, T.J. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases. Nat. Commun. 2017, 8, 727. [Google Scholar] [CrossRef] [PubMed]
- Nayek, P.; Jeong, H.; Park, H.R.; Kang, S.-W.; Lee, S.H.; Park, H.S.; Lee, H.J.; Kim, H.S. Tailoring monodomain in blue phase liquid crystal by surface pinning effect. Appl. Phys. Express 2012, 5, 051701. [Google Scholar] [CrossRef]
- Kim, K.; Kim, S.; Jo, S.-Y.; Choi, S.-W. A monodomain-like liquid-crystalline simple cubic blue phase II. J. Inf. Disp. 2015, 16, 155–160. [Google Scholar] [CrossRef]
- Oton, E.; Netter, E.; Nakano, T.; Inoue, F. Monodomain blue phase liquid crystal layers for phase modulation. Sci. Rep. 2017, 7, 44575. [Google Scholar] [CrossRef]
- Jo, S.-Y.; Jeon, S.-W.; Kim, B.-C.; Bae, J.-H.; Araoka, F.; Choi, S.-W. Polymer stabilization of liquid-crystal blue phase II toward photonic crystals. ACS Appl. Mater. Interfaces 2017, 9, 8941–8947. [Google Scholar] [CrossRef] [PubMed]
- Manda, R.; Pagidi, S.; Heo, Y.J.; Lim, Y.J.; Kim, M.S.; Lee, S.H. Polymer-Stabilized Monodomain Blue Phase Diffraction Grating. Adv. Mater. Interfaces 2020, 7, 1901923. [Google Scholar] [CrossRef]
- Takahashi, M.; Ohkawa, T.; Yoshida, H.; Fukuda, J.-I.; Kikuchi, H.; Ozaki, M. Orientation of liquid crystalline blue phases on unidirectionally orienting surfaces. J. Phys. D Appl. Phys. 2018, 51, 104003. [Google Scholar] [CrossRef]
- Zheng, Z.G.; Yuan, C.L.; Hu, W.; Bisoyi, H.K.; Tang, M.J.; Liu, Z.; Sun, P.Z.; Yang, W.Q.; Wang, X.Q.; Shen, D. Light-patterned crystallographic direction of a self-organized 3d soft photonic crystal. Adv. Mater. 2017, 29, 1703165. [Google Scholar] [CrossRef] [PubMed]
- Otón, E.; Yoshida, H.; Morawiak, P.; Strzeżysz, O.; Kula, P.; Ozaki, M.; Piecek, W. Orientation control of ideal blue phase photonic crystals. Sci. Rep. 2020, 10, 10148. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, S.-T. Electric field-induced monodomain blue phase liquid crystals. Appl. Phys. Lett. 2013, 102, 171110. [Google Scholar] [CrossRef]
- Chen, M.; Lin, Y.-H.; Chen, H.-S.; Chen, H.-Y. Electrically assisting crystal growth of blue phase liquid crystals. Opt. Mater. Express 2014, 4, 953–959. [Google Scholar] [CrossRef]
- Wang, C.-T.; Liu, H.-Y.; Cheng, H.-H.; Lin, T.-H. Bistable effect in the liquid crystal blue phase. Appl. Phys. Lett. 2010, 96, 041106. [Google Scholar] [CrossRef]
- Yan, J.; Lin, J.; Li, Q.; Li, R.-Z. Influence of long-lasting electric field on the formation of monodomain polymer stabilized blue phase liquid crystals. J. Appl. Phys. 2019, 125, 024501. [Google Scholar] [CrossRef]
- Martínez-González, J.A.; Li, X.; Sadati, M.; Zhou, Y.; Zhang, R.; Nealey, P.F.; De Pablo, J.J. Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals. Nat. Commun. 2017, 8, 15854. [Google Scholar] [CrossRef]
- Li, X.; Martínez-González, J.A.; Park, K.; Yu, C.; Zhou, Y.; de Pablo, J.J.; Nealey, P.F. Perfection in nucleation and growth of blue-phase single crystals: Small free-energy required to self-assemble at specific lattice orientation. ACS Appl. Mater. Interfaces 2019, 11, 9487–9495. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Martinez-Gonzalez, J.A.; de Pablo, J.J.; Nealey, P. Thickness dependence of forming single crystal by liquid-crystalline blue phase on chemically patterned surface. SPIE 2018, 10555, 1055514. [Google Scholar]
- Li, X.; Martínez-González, J.A.; Hernández-Ortiz, J.P.; Ramírez-Hernández, A.; Zhou, Y.; Sadati, M.; Zhang, R.; Nealey, P.F.; De Pablo, J.J. Mesoscale martensitic transformation in single crystals of topological defects. Proc. Natl. Acad. Sci. USA 2017, 114, 10011–10016. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Martínez-González, J.A.; Guzmán, O.; Ma, X.; Park, K.; Zhou, C.; Kambe, Y.; Jin, H.M.; Dolan, J.A.; Nealey, P.F. Sculpted grain boundaries in soft crystals. Sci. Adv. 2019, 5, eaax9112. [Google Scholar] [CrossRef]
- Alexander, G.; Marenduzzo, D. Cubic blue phases in electric fields. Europhys. Lett. 2008, 81, 66004. [Google Scholar] [CrossRef]
- Alexander, G.; Yeomans, J. Numerical results for the blue phases. Liq. Cryst. 2009, 36, 1215–1227. [Google Scholar] [CrossRef]
- Kobashi, J.; Yoshida, H.; Ozaki, M. Polychromatic optical vortex generation from patterned cholesteric liquid crystals. Phys. Rev. Lett. 2016, 116, 253903. [Google Scholar] [CrossRef]
- Cho, S.; Ono, M.; Yoshida, H.; Ozaki, M. Bragg-Berry flat reflectors for transparent computer-generated holograms and waveguide holography with visible color playback capability. Sci. Rep. 2020, 10, 8201. [Google Scholar] [CrossRef]
- Cho, S.; Yoshida, H.; Ozaki, M. Emission Direction-Tunable Liquid Crystal Laser. Adv. Opt. Mater. 2020, 8, 2000375. [Google Scholar] [CrossRef]
- Lin, T.H.; Li, Y.; Wang, C.T.; Jau, H.C.; Chen, C.W.; Li, C.C.; Bisoyi, H.K.; Bunning, T.J.; Li, Q. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film. Adv. Mater. 2013, 25, 5050–5054. [Google Scholar] [CrossRef]
- Yang, J.; Liu, J.; Guan, B.; He, W.; Yang, Z.; Wang, J.; Ikeda, T.; Jiang, L. Fabrication and photonic applications of large-domain blue phase films. J. Mater. Chem. C 2019, 7, 9460–9466. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, W.; Yang, Z.; He, W.; Wang, J.; Ikeda, T.; Jiang, L. Printable photonic polymer coating based on a monodomain blue phase liquid crystal network. J. Mater. Chem. C 2019, 7, 13764–13769. [Google Scholar] [CrossRef]
- Castles, F.; Morris, S.; Hung, J.; Qasim, M.M.; Wright, A.; Nosheen, S.; Choi, S.; Outram, B.; Elston, S.; Burgess, C. Stretchable liquid-crystal blue-phase gels. Nat. Mater. 2014, 13, 817–821. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.; Ozaki, M. Blue Phase Liquid Crystals with Tailored Crystal Orientation for Photonic Applications. Symmetry 2021, 13, 1584. https://doi.org/10.3390/sym13091584
Cho S, Ozaki M. Blue Phase Liquid Crystals with Tailored Crystal Orientation for Photonic Applications. Symmetry. 2021; 13(9):1584. https://doi.org/10.3390/sym13091584
Chicago/Turabian StyleCho, SeongYong, and Masanori Ozaki. 2021. "Blue Phase Liquid Crystals with Tailored Crystal Orientation for Photonic Applications" Symmetry 13, no. 9: 1584. https://doi.org/10.3390/sym13091584
APA StyleCho, S., & Ozaki, M. (2021). Blue Phase Liquid Crystals with Tailored Crystal Orientation for Photonic Applications. Symmetry, 13(9), 1584. https://doi.org/10.3390/sym13091584