Chiral Dirac Equation and Its Spacetime and CPT Symmetries
Abstract
:1. Introduction
2. Methods to Derive Chiral Dirac Equation
2.1. Group Theoretical Derivation
2.2. Derivation from Lagrangian Formalism
2.3. Derivation from Orthogonal Idempotents
3. Symmetries and Their Physical Implications
3.1. Spacetime Symmetries
3.2. CPT Symmetries
- (1)
- If exhibits C-invariance (), then
- (2)
- If exhibits CP-invariance (), then
- (3)
- If exhibits CPT-invariance (), then
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dirac, P.A.M. The quantum theory of the electron. Proc. R. Soc. Lond. 1928, 117, 610. [Google Scholar]
- Sogami, I. Generalized Dirac equation with four orthogonal families of spin 1/2 solutions. Prog. Theor. Phys. 1981, 66, 303. [Google Scholar] [CrossRef] [Green Version]
- Kruglov, S.I. Chiral Bargmann-Wigner Equations for Spin-1 Massive Fields. arXiv 2006, arXiv:hep-ph/0507027v2. [Google Scholar]
- Marsh, E.; Narita, Y. Fermion unification model based on the intrinsic SU(8) symmetry of a generalized Dirac equation. Front. Phys. 2015, 3, 82. [Google Scholar] [CrossRef] [Green Version]
- Barut, A.O.; Cordero, P.; Ghirardi, G.C. Theory of the heavy electron. Phys. Rev. 1969, 182, 1844. [Google Scholar] [CrossRef]
- Barut, A.O. The mass of muon. Phys. Lett. 1978, 73B, 310. [Google Scholar] [CrossRef]
- Pfister, W. Mixed-symmetry solutions of generalized three-particle Bargmann-Wigner equations in the strong-coupling limit. Nuovo Cim. A 1995, 108, 1427. [Google Scholar] [CrossRef] [Green Version]
- Kruglov, S.I. On the Hamiltonian form of generalized Dirac equation for fermions with two mass states. Elect. J. Theor. Phys. 2006, 3, 11. [Google Scholar]
- Kruglov, S.I. Modified Dirac equation with Lorentz invariance violoation and its solutions for particles in an external magnetic field. Phys. Lett. B 2012, 718, 228. [Google Scholar] [CrossRef] [Green Version]
- Leiter, D.; Szamosi, G. Pseudoscalar mass and its relationship to conventional scalar mass in relativistic Dirac theory of the electron. Lett. Nuovo Cim. 1972, 5, 814. [Google Scholar] [CrossRef]
- Nozari, K. Generalized Dirac equation and its symmetries. Chaos Solitons Fractals 2007, 32, 302. [Google Scholar] [CrossRef]
- Watson, T.B.; Musielak, Z.E. Chiral symmetry in Dirac equation and its effecst on neutrino masses and dark matter. Int. J. Mod. Phys. A 2020, 35, 2050189. [Google Scholar] [CrossRef]
- Wigner, E.P. On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 1939, 40, 149. [Google Scholar] [CrossRef]
- Kim, Y.S.; Noz, M.E. Theory and Applications of the Poincaré Group; Reidel: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Ryder, L.W. Quantum Field Theory; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Frampton, P.H. Gauge Field Theories; John Wiley & Sons, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Daughty, N.A. Lagrangian Interactions; Addison-Wesley Publ. Comp., Inc.: Sydney, Australia, 1990. [Google Scholar]
- Hojman, S. A new conservation law constructed without using either Lagrangians or Hamiltonians. J. Phys. A Math. Gen. 1992, 27, L59. [Google Scholar] [CrossRef]
- Hojman, S. Symmetries of Lagrangians and of their equations of motion. J. Phys. A Math. Gen. 1984, 17, 2399. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifschitz, E.M. Mechanics; Pergamon Press: Oxford, UK, 1969. [Google Scholar]
- Levy-Leblond, J.-M. Group-theoretical foundations of classical mechanics: The Lagrange gauge problem. Comm. Math. Phys. 1969, 12, 64. [Google Scholar] [CrossRef]
- Musielak, Z.E.; Watson, T.B. Gauge functions and Galilean invariance of Lagrangians. Phys. Lett. A 2020, 384, 126642. [Google Scholar] [CrossRef]
- Petitjean, M. About chirality in Minkowski spacetime. Symmetry 2019, 11, 1320. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watson, T.B.; Musielak, Z.E. Chiral Dirac Equation and Its Spacetime and CPT Symmetries. Symmetry 2021, 13, 1608. https://doi.org/10.3390/sym13091608
Watson TB, Musielak ZE. Chiral Dirac Equation and Its Spacetime and CPT Symmetries. Symmetry. 2021; 13(9):1608. https://doi.org/10.3390/sym13091608
Chicago/Turabian StyleWatson, Timothy B., and Zdzislaw E. Musielak. 2021. "Chiral Dirac Equation and Its Spacetime and CPT Symmetries" Symmetry 13, no. 9: 1608. https://doi.org/10.3390/sym13091608
APA StyleWatson, T. B., & Musielak, Z. E. (2021). Chiral Dirac Equation and Its Spacetime and CPT Symmetries. Symmetry, 13(9), 1608. https://doi.org/10.3390/sym13091608