Symmetries and Related Physical Balances for Discontinuous Flow Phenomena within the Framework of Lagrange Formalism
Abstract
:1. Introduction
2. General Theory
2.1. Hamilton’s Principle and Euler–Lagrange Equations
2.2. Galilean Invariance and Implications for the Lagrangian
- time translations:
- space translations:
- rigid rotations:
- Galilei boosts:
2.3. Associated Balances Resulting from Noether’s Theorem
2.4. Variation with a Discontinuous Lagrangian
2.5. Rankine–Hugoniot Conditions for Canonical Noether Fluxes
2.5.1. Energy
2.5.2. Momentum
2.5.3. Mass and Displacement
3. Application of the Theory to Shock Waves
3.1. Lagrangian for Viscous Flow
3.2. Dual Transformation and Noether Observables
3.3. Resulting Rankine–Hugoniot Conditions
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldstein, H.; Poole, C.P.; Safko, J.L. Klassische Mechanik; WILEY-VCH: Berlin, Germany, 2006. [Google Scholar]
- Noether, E. Invariant variation problems. Transp. Theory Stat. Phys. 1971, 1, 186–207. [Google Scholar] [CrossRef] [Green Version]
- Kluwick, A. Shock discontinuities: From classical to non-classical shocks. Acta Mech. 2018, 229, 515–533. [Google Scholar] [CrossRef] [Green Version]
- Gavrilyuk, S.L.; Gouin, H. Rankine–Hugoniot conditions for fluids whose energy depends on space and time derivatives of density. Wave Motion 2020, 98, 102620. [Google Scholar] [CrossRef]
- Jordan, P.M.; Saccomandi, G.; Parnell, W.J. The sesquicentennial of Rankine’s On the Thermodynamic Theory of Waves of Finite Longitudinal Disturbance: Recent advances in nonlinear acoustics and gas dynamics. Wave Motion 2021, 102, 102703. [Google Scholar] [CrossRef]
- Davey, K.; Darvizeh, R. Neglected transport equations: Extended Rankine–Hugoniot conditions and J-integrals for fracture. Contin. Mech. Thermodyn. 2016, 28, 1525–1552. [Google Scholar] [CrossRef]
- Seliger, R.; Witham, G.B. Variational principles in continuum mechanics. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1968, 305, 1–25. [Google Scholar] [CrossRef]
- Scholle, M. Construction of Lagrangians in continuum theories. Proc. R. Soc. Lond. A 2004, 460, 3241–3260. [Google Scholar] [CrossRef]
- Scholle, M.; Marner, F. A non-conventional discontinuous Lagrangian for viscous flow. R. Soc. Open Sci. 2017, 4, 160447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuckerwar, A.J.; Ash, R.L. Variational approach to the volume viscosity of fluids. Phys. Fluids 2006, 18, 047101. [Google Scholar] [CrossRef] [Green Version]
- Anthony, K.H. Unification of Continuum-Mechanics and Thermodynamics by Means of Lagrange-Formalism—Present Status of the Theory and Presumable Applications. Arch. Mech. 1989, 41, 511–534. [Google Scholar]
- Anthony, K.H. Phenomenological thermodynamics of irreversible processes within Lagrange formalism. Acta Phys. Hung. 1990, 67, 321–340. [Google Scholar] [CrossRef]
- Anthony, K.H. Hamilton’s action principle and thermodynamics of irreversible processes – a unifying procedure for reversible and irreversible processes. J. Non-Newton. Fluid Mech. 2001, 96, 291–339. [Google Scholar] [CrossRef]
- Madelung, E. Quantentheorie in hydrodynamischer Form. Z. Phys. 1927, 40, 322–326. [Google Scholar] [CrossRef]
- Scholle, M. A discontinuous variational principle implying a non-equilibrium dispersion relation for damped acoustic waves. Wave Motion 2020, 98, 102636. [Google Scholar] [CrossRef]
- Marner, F.; Scholle, M.; Herrmann, D.; Gaskell, P.H. Competing Lagrangians for incompressible and compressible viscous flow. R. Soc. Open Sci. 2019, 6, 181595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholle, M. A weekly nonlinear wave equation for damped hydroacoustic waves beyond thermodynamic equilibrium. Wave Motion 2021. under revision. [Google Scholar]
- Scholle, M.; Marner, F.; Gaskell, P.H. Potential Fields in Fluid Mechanics: A Review of Two Classical Approaches and Related Recent Advances. Water 2020, 12, 1241. [Google Scholar] [CrossRef]
- Schmutzer, E. Symmetrien und Erhaltungssätze der Physik; Reihe Mathematik und Physik, Akad.-Verl. [u.a.]: Berlin, Germany, 1972; Volume 75, p. 165S. [Google Scholar]
- Corson, E.M. Introduction to Tensors, Spinors and Relativistic Wave-Equations: Relation Structure; Hafner: New York, NY, USA, 1953. [Google Scholar]
- Calkin, M.G. An action principle for magnetohydrodynamics. Can. J. Phys. 1963, 41, 2241–2251. [Google Scholar] [CrossRef]
- Fruleux, A.; Kawai, R.; Sekimoto, K. Momentum Transfer in Nonequilibrium Steady States. Phys. Rev. Lett. 2012, 108, 160601. [Google Scholar] [CrossRef] [Green Version]
- Spurk, J.H.; Aksel, N. Fluid Mechanics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Schoenberg, M. Vortex Motions of the Madelung Fluid. Nuovo C. 1955, 1, 543–580. [Google Scholar] [CrossRef]
- Scholle, M.; Anthony, K.H. Line-shaped objects and their balances related with gauge symmetries in continuum theories. Proc. R. Soc. Lond. A 2004, 460, 875–896. [Google Scholar] [CrossRef]
Symmetry | Balance | Density | Flux Density | |||
---|---|---|---|---|---|---|
time transl. | 1 | 0 | 0 | energy | ||
space transl. | 0 | 0 | momentum | |||
ind. gauge | 0 | 0 | mass |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mellmann, M.; Scholle, M. Symmetries and Related Physical Balances for Discontinuous Flow Phenomena within the Framework of Lagrange Formalism. Symmetry 2021, 13, 1662. https://doi.org/10.3390/sym13091662
Mellmann M, Scholle M. Symmetries and Related Physical Balances for Discontinuous Flow Phenomena within the Framework of Lagrange Formalism. Symmetry. 2021; 13(9):1662. https://doi.org/10.3390/sym13091662
Chicago/Turabian StyleMellmann, Marcel, and Markus Scholle. 2021. "Symmetries and Related Physical Balances for Discontinuous Flow Phenomena within the Framework of Lagrange Formalism" Symmetry 13, no. 9: 1662. https://doi.org/10.3390/sym13091662
APA StyleMellmann, M., & Scholle, M. (2021). Symmetries and Related Physical Balances for Discontinuous Flow Phenomena within the Framework of Lagrange Formalism. Symmetry, 13(9), 1662. https://doi.org/10.3390/sym13091662