Displacements and Stress Functions of Straight Dislocations and Line Forces in Anisotropic Elasticity: A New Derivation and Its Relation to the Integral Formalism
Abstract
:1. Introduction
2. Basic Equations of Incompatible Elasticity with Dislocations and Body Forces
2.1. Displacement Field Due to Dislocations and Body Forces
2.2. Stress Functions Due to Dislocations and Body Forces
Stress Functions of a Point Force
3. Generalized Plane Strain of Straight Dislocations and Straight Line Forces
3.1. Anisotropic Elasticity of Generalized Plane Strain
3.2. Displacements and Stress Functions of Straight Dislocations and Line Forces
3.3. Relation to the Integral Formalism
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. 2D Anisotropic Green Tensor of the Navier Operator for Generalized Plane Strain
Appendix B. 2D Anisotropic F-Tensor for Generalized Plane Strain
Appendix C. Lothe’s Integral Equation
References
- Hirth, J.P.; Lothe, J. Theory of Dislocations, 2nd ed.; John Wiley: New York, NY, USA, 1982. [Google Scholar]
- Bacon, D.J.; Barnett, D.M.; Scattergood, R.O. Anisotropic continuum theory of defects. Prog. Mater. Sci. 1980, 23, 51–262. [Google Scholar] [CrossRef]
- Ting, T.C.T. Anisotropic Elasticity; Oxford Science Publishers: Oxford, UK, 1996. [Google Scholar]
- Stroh, A.N. Dislocations and cracks in anisotropic elasticity. Phil. Mag. 1958, 3, 625–646. [Google Scholar] [CrossRef]
- Stroh, A.N. Steady state problems in anisotropic elasticity. J. Math. Phys. 1962, 41, 77–103. [Google Scholar] [CrossRef]
- Asaro, R.J.; Hirth, J.P.; Barnett, D.M.; Lothe, J. A further synthesis of sextic and integral theories for dislocations and line forces in anisotropic media. Phys. Stat. Sol. 1973, 60, 261–271. [Google Scholar] [CrossRef]
- Asaro, R.J.; Hirth, J.P.; Lothe, J. Stress functions for line defects in anisotropic elastic media. Scripta Metall. 1975, 9, 837–840. [Google Scholar] [CrossRef]
- Balluffi, R.W. Introduction to Elasticity Theory for Crystal Defects; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Barnett, D.M.; Lothe, J. Synthesis of the sextic and the integral formalism for dislocations, Green’s function and structure waves in anisotropic elastic solids. Phys. Norv. 1973, 7, 13–19. [Google Scholar]
- Lekhnitskii, S.G. Theory of Elasticity of an Anisotropic Body; Holden-Day: San Francisco, CA, USA, 1950. [Google Scholar]
- Lothe, J. Dislocations in anisotropic media. In Elastic Strain Fields and Dislocation Mobility; Indenbom, V.L., Lothe, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 269–328. [Google Scholar]
- Kirchner, H.O.K.; Bluemel, K.H. Elastic quasi-isotropy normal to the basal plane in the hexagonal system. Phys. Stat. Sol. 1976, 75, 527–532. [Google Scholar] [CrossRef]
- Ni, L.; Nemat-Nasser, S. A general duality principle in elasticity. Mech. Mater. 1996, 24, 87–123. [Google Scholar] [CrossRef]
- Wu, M.S.; Kirchner, H.O.K. Line defects in the (110)-plane of a cubic crystal—An outstanding problem solved by the integral formalism. Proc. R. Soc. Lond. A 2003, 459, 2033–2047. [Google Scholar] [CrossRef]
- Lazar, M.; Kirchner, H.O.K. Dislocation loops in anisotropic elasticity: Displacement field, stress function tensor and interaction energy. Phil. Mag. 2013, 93, 174–185. [Google Scholar] [CrossRef]
- Kröner, E. Kontinuumstheorie der Versetzungen und Eigenspannungen; Springer: Berlin, Germany, 1958. [Google Scholar]
- Kröner, E. Continuum theory of defects. In Physics of Defects (Les Houches, Session 35); Balian, R., Kleman, M., Poirier, J.P., Eds.; North-Holland: Amsterdam, The Netherlands, 1981; pp. 215–315. [Google Scholar]
- Mura, T. Micromechanics of Defects in Solids, 2nd ed.; Martinus Nijhoff: Dordrecht, The Amsterdam, 1987. [Google Scholar]
- Alshits, V.I.; Kirchner, H.O.K. Elasticity of multilayers, part I: Basic equations and solutions. Phil. Mag. A 1995, 72, 1431–1444. [Google Scholar] [CrossRef]
- Lazar, M. Micromechanics and dislocation theory in anisotropic elasticity. J. Micromech. Mol. Phys. 2016, 1, 1650011. [Google Scholar] [CrossRef] [Green Version]
- Nowacki, J.P. Static and Dynamic Coupled Fields in Bodies with Piezoeffects or Polarization Gradient (Lecture Notes in Applied and Computational Mechanics); Springer: Berlin, Germany, 2006. [Google Scholar]
- Lazar, M.; Kirchner, H.O.K. Cosserat (micropolar) elasticity in Stroh form. Int. J. Solids Struct. 2005, 42, 5377–5398. [Google Scholar] [CrossRef]
- Bertóti, E. Indeterminacy of first order stress functions and the stress- and rotation-based formulation of linear elas-ticity. Comput. Mech. 1994, 14, 249–265. [Google Scholar] [CrossRef]
- Mura, T. Continuous distribution of moving dislocations. Phil. Mag. 1963, 8, 843–857. [Google Scholar]
- Willis, J.R. Second-order effects of dislocations in anisotropic crystals. Int. J. Eng. Sci. 1967, 5, 171–190. [Google Scholar] [CrossRef]
- Vladimirov, V.S. Equations of Mathematical Physics; Marcel Dekker, Inc.: New York, NY, USA, 1971. [Google Scholar]
- Kirchner, H.O.K. The concept of the line tension: Theory and experiments. In Dislocation 1984; Veyssière, P., Kubin, L., Castaing, J., Eds.; Editions du CNRS: Paris, France, 1984; pp. 53–71. [Google Scholar]
- Lifshitz, I.M.; Rosenzweig, L.N. On the construction of the Green’s tensor for the basic equation of the theory of elasticity of an anisotropic medium. Zh. Eksper. Teor. Fiz. 1947, 17, 783–791. [Google Scholar]
- Synge, J.L. The Hypercircle in Mathematical Physics; Cambridge University Press: Cambridge, UK, 1957. [Google Scholar]
- Wentzel, G. Comments on Dirac’s theory of magnetic monopoles. Prog. Theor. Phys. Suppl. 1966, 37, 163–174. [Google Scholar]
- Kleinert, H. Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation; World Scientific: Singapore, 2008. [Google Scholar]
- Lazar, M.; Po, G. The solid angle and the Burgers formula in the theory of gradient elasticity: Line integral representation. Phys. Lett. A 2014, 378, 597–601. [Google Scholar] [CrossRef] [Green Version]
- Leibfried, G. Versetzungen in anisotropem Material. Z. Phys. 1953, 135, 23–43. [Google Scholar] [CrossRef]
- Lothe, J. Dislocations interacting with surfaces, interfaces or cracks. In Elastic Strain Fields and Dislocation Mobility; Indenbom, V.L., Lothe, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 329–389. [Google Scholar]
- Kirchner, H.O.K. Line defects along the axis of rotationally inhomogeneous media. Phil. Mag. A 1987, 55, 537–542. [Google Scholar] [CrossRef]
- Alshits, V.I.; Kirchner, H.O.K.; Ting, T.C.T. Inhomogeneous piezoelectric piezomagnetic media. Phil. Mag. Lett. 1995, 71, 285–288. [Google Scholar] [CrossRef]
- Kirchner, H.O.K.; Alshits, V.I. Elastically anisotropic angularly inhomogeneous media. Part II: Green’s function for piezoelectric, piezomagnetic and magnetoelectric media. Phil. Mag. A 1996, 74, 861–885. [Google Scholar] [CrossRef]
- Gel’fand, I.M.; Shilov, G.E. Generalized Functions; Academic: New York, NY, USA, 1964; Volume I. [Google Scholar]
- Wang, C.-Y.; Achenbach, J.D. Elastodynamic fundamental solutions for anisotropic solids. Geophys. J. Int. 1994, 118, 384–392. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-Y. Two-dimensional elastostatic Green’s functions for general anisotropic solids and generalization of Stroh’s formalism. Int. J. Solids Struct. 1994, 31, 2591–2597. [Google Scholar] [CrossRef]
- Li, S.; Wang, G. Introduction to Micromechanics and Nanomechanics; World Scientific: Singapore, 2008. [Google Scholar]
- Michelitsch, T.; Levin, V.M. Green’s function for the infinite two-dimensional orthotropic medium. Int. J. Fract. 2000, 107, 33–38. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazar, M. Displacements and Stress Functions of Straight Dislocations and Line Forces in Anisotropic Elasticity: A New Derivation and Its Relation to the Integral Formalism. Symmetry 2021, 13, 1721. https://doi.org/10.3390/sym13091721
Lazar M. Displacements and Stress Functions of Straight Dislocations and Line Forces in Anisotropic Elasticity: A New Derivation and Its Relation to the Integral Formalism. Symmetry. 2021; 13(9):1721. https://doi.org/10.3390/sym13091721
Chicago/Turabian StyleLazar, Markus. 2021. "Displacements and Stress Functions of Straight Dislocations and Line Forces in Anisotropic Elasticity: A New Derivation and Its Relation to the Integral Formalism" Symmetry 13, no. 9: 1721. https://doi.org/10.3390/sym13091721
APA StyleLazar, M. (2021). Displacements and Stress Functions of Straight Dislocations and Line Forces in Anisotropic Elasticity: A New Derivation and Its Relation to the Integral Formalism. Symmetry, 13(9), 1721. https://doi.org/10.3390/sym13091721