On Some New Fractional Ostrowski- and Trapezoid-Type Inequalities for Functions of Bounded Variations with Two Variables
Abstract
:1. Introduction
2. Preliminaries
2.1. Functions of Bounded Variation with One Variable
2.2. Functions of Bounded Variation with Two Variables
2.3. Generalized Fractional Integrals
3. Some Equalities for Functions of Bounded Variations with Two Variables
4. Trapezoid-Type Inequalities for Functions of Bounded Variations with Two Variables
5. Ostrowski-Type Inequalities for Functions of Bounded Variations with Two Variables
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostrowski, A. Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert. Comment. Math. Helv. 1938, 10, 226–227. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M.; Dragomir, S.S.; Cerone, P. Ostrowski type inequalities for functions whose derivatives are ξ-convex in the second sense. Appl. Math. Lett. 2010, 23, 1071–1076. [Google Scholar] [CrossRef]
- Kavurmaci, H.; Özdemir, M.E. New Ostrowski type inequalities for m-convex functions and applications. Hacet. J. Math. Stat. 2011, 40, 135–145. [Google Scholar]
- Matłoka, M. Ostrowski type inequalities for functions whose derivatives are h-convex via fractional integrals. J. Sci. Res. Rep. 2014, 1633–1641. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Kavurmaci, H.; Set, E. Ostrowski’s type inequalities for (α,m)-convex function. Kyungpook Math. J. 2010, 50, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Tunç, M. Ostrowski-type inequalities via h-convex functions with applications to special means. J. Inequal. Appl. 2013, 2013, 326. [Google Scholar] [CrossRef] [Green Version]
- Set, E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Farid, G.; Rehman, A.; Usman, M. Ostrowski type fractional integral inequalities for s-Godunova–Levin functions via k-fractional integrals. Proyecc. J. Math. 2017, 36, 753–767. [Google Scholar]
- Sarikaya, M.Z.; Budak, H. Generalized Ostrowski type inequalities for local fractional integrals. Proc. Am. Math. Soc. 2017, 145, 1527–1538. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Luo, M.-J.; Raina, R.K. On Ostrowski type inequalities. Fasc. Math. 2016, 56, 5–27. [Google Scholar] [CrossRef]
- Basci, Y.; Baleanu, D. Ostrowski type inequalities involving ψ-Hilfer fractional integrals. Mathematics 2019, 7, 770. [Google Scholar] [CrossRef] [Green Version]
- Budak, H.; Özçelik, K. Some generalized fractional trapezoid and Ostrowski type inequalities for functions with bounded partial derivatives. Math. Methods Appl. Sci. 2021, 1–21. [Google Scholar] [CrossRef]
- Dragomir, S.S. Ostrowski and trapezoid type inequalities for the generalized k-ρ-fractional integrals of functions with bounded variation. Commun. Adv. Math. Sci. 2017, 2, 309–330. [Google Scholar] [CrossRef]
- Dragomir, S.S. Ostrowski and trapezoid type inequalities for Riemann–Liouville fractional integrals of absolutely continuous functions with bounded derivatives. Fract. Differ. Calc. 2020, 10, 307–320. [Google Scholar] [CrossRef]
- Dragomir, S.S. On some trapezoid type inequalities for generalized Riemann-Liouville fractional integrals. RGMIA Res. Rep. Coll. 2017, 20, 12. [Google Scholar]
- Dragomir, S.S. On some Ostrowski type inequalities for generalized Riemann–Liouville fractional integrals. RGMIA Res. Rep. Coll. 2017, 20, 13. [Google Scholar]
- Dragomir, S.S. Ostrowski and trapezoid type inequalities for generalized Riemann–Liouville fractional integrals of absolutely continuous functions with bounded derivatives. RGMIA Res. Rep. Coll. 2017, 20, 19. [Google Scholar]
- Dragomir, S.S. Further Ostrowski and trapezoid type inequalities for the generalized Riemann-Liouville fractional integrals of functions with bounded variation. RGMIA Res. Rep. Coll. 2017, 20, 20. [Google Scholar]
- Farid, G.; Usman, M. Ostrowski type k-fractional integral inequalities for MT-convex and h-convex functions. Nonlinear Funct. Anal. Appl. 2017, 22, 627–639. [Google Scholar]
- Gürbüz, M.; Taşdan, Y.; Set, E. Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Math. 2020, 5, 42–53. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Filiz, H. Note on the Ostrowski type inequalities for fractional integrals. Vietnam J. Math. 2014, 42, 187–190. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildiz, M.K. Generalization and improvement of Ostrowski type inequalities. AIP Conf. Proc. 2018, 1991, 020031. [Google Scholar]
- Sarikaya, M.Z.; Budak, H.; Yaldiz, H. Some new Ostrowski type inequalities for co-ordinated convex functions. Turkish J. Anal. Number Theory 2014, 2, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Latif, M.A.; Hussain, S.; Dragomir, S.S. New Ostrowski type inequalities for co-ordinated convex functions. TJMM 2012, 4, 125–136. [Google Scholar]
- Latif, M.A.; Hussain, S. New inequalities of Ostrowski type for co-ordinated convex functions via fractional integrals. J. Fract. Calc. Appl. 2012, 2, 1–15. [Google Scholar]
- Dragomir, S.S. On the Ostrowski’s integral inequality for mappings with bounded variation and applications. Math. Inequal. Appl. 2001, 4, 59–66. [Google Scholar] [CrossRef]
- Dragomir, S.S. On trapezoid quadrature formula and applications. Kragujev. J. Math. 2001, 23, 25–36. [Google Scholar]
- Dragomir, S.S. On the midpoint quadrature formula for mappings with bounded variation and applications. Kragujev. J. Math. 2000, 22, 13–19. [Google Scholar]
- Dragomir, S.S. On Simpson’s quadrature formula for mappings of bounded variation and applications. Tamkang J. Math. 1999, 30, 53–58. [Google Scholar] [CrossRef]
- Alomari, M.W. A generalization of Dragomir’s generalization of Ostrowski integral inequality and applications in numerical integration. Ukr. Math. 2012, 64, 435–450. [Google Scholar]
- Alomari, M.W. A Generalization of weighted companion of Ostrowski integral inequality for mappings of bounded variation. Int. J. Nonlinear Sci. Numer. Simul. 2020, 1, 667–673. [Google Scholar] [CrossRef]
- Barnett, N.S.; Dragomir, S.S.; Gomm, I. A companion for the Ostrowski and the generalized trapezoid inequalities. Math. Comput. Model. 2009, 50, 179–187. [Google Scholar] [CrossRef]
- Budak, H.; Sarikaya, M.Z.; Qayyum, A. Improvement in companion of Ostrowski type inequalities for mappings whose first derivatives are of bounded variation and application. Filomat 2017, 31, 5305–5314. [Google Scholar] [CrossRef] [Green Version]
- Budak, H.; Pehlivan, E. Some inequalities for weighted area balance via functions of bounded variation. Rocky Mt. J. Math. 2020, 50, 455–466. [Google Scholar] [CrossRef]
- Budak, H.; Sarikaya, M.Z. On generalization of Dragomir’s inequalities. Turkish J. Anal. Number Theory 2017, 5, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Cerone, P.; Dragomir, S.S.; Pearce, C.E.M. A generalized trapezoid inequality for functions of bounded variation. Turk. J. Math. 2000, 24, 147–163. [Google Scholar]
- Dragomir, S.S. The Ostrowski integral inequality for mappings of bounded variation. Bull. Aust. Math. Soc. 1999, 60, 495–508. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. A companion of Ostrowski’s inequality for functions of bounded variation and applications. Int. J. Nonlinear Anal. Appl. 2014, 5, 89–97. [Google Scholar]
- Tseng, K.-L.; Yang, G.-S.; Dragomir, S.S. Generalizations of weighted trapezoidal inequality for mappings of bounded variation and their applications. Math. Comput. Model. 2004, 40, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Tseng, K.-L.; Hwang, S.-R.; Dragomir, S.S. Generalizations of weighted Ostrowski type inequalities for mappings of bounded variation and applications. Comput. Math. Appl. 2008, 55, 1785–1793. [Google Scholar] [CrossRef] [Green Version]
- Tseng, K.-L.; Hwang, S.-R.; Yang, G.-S.; Chu, Y.-M. Improvements of the Ostrowski integral inequality for mappings of bounded variation I. Appl. Comput. Math. 2010, 217, 2348–2355. [Google Scholar] [CrossRef]
- Tseng, K.-L.; Hwang, S.-R.; Yang, G.-S.; Chu, Y.-M. Weighted Ostrowski integral inequality for mappings of bounded variation. Taiwan. J. Math. 2011, 15, 573–585. [Google Scholar] [CrossRef]
- Jawarneh, Y.; Noorani, M.S.M. Inequalities of Ostrowski and Simpson type for mappings of two variables with bounded variation and applications. TJMM 2011, 3, 81–94, Erratum in 2018, 10, 71–74. [Google Scholar]
- Moricz, F. Order of magnitude of double Fourier coefficients of functions of bounded variation. Analysis 2002, 22, 335–345. [Google Scholar] [CrossRef]
- Budak, H.; Sarikaya, M.Z. On weighted generalization of trapezoid inequalities for functions of two variables with bounded variation. Kragujev. J. Math. 2019, 43, 109–122. [Google Scholar]
- Budak, H.; Sarikaya, M.Z. A companion of Ostrowski type inequalities for functions of two variables with bounded variation. J. Adv. Math. Stud. 2015, 8, 170–184. [Google Scholar]
- Budak, H.; Sarikaya, M.Z. A companion of generalization of Ostrowski type inequalities for functions of two variables with bounded variation. Appl. Comput. Math. 2016, 15, 297–312. [Google Scholar]
- Schumacher, C.S. Closer and Closer: Introducing Real Analysis, 1st ed.; Jones and Bartlett Publishers Inc.: Boston, MA, USA, 2008. [Google Scholar]
- Clarkson, J.A.; Adams, C.R. On definitions of bounded variation for functions of two variables. Bull. Am. Math. Soc. 1933, 35, 824–854. [Google Scholar] [CrossRef]
- Clarkson, J.A. On double Riemann-Stieltjes integrals. Bull. Am. Math. Soc. 1933, 39, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Samko, S.G.; Kilbas, A.A.; Marichev, I.O. Fractional Integrals and Derivatives: Theory and Applications; Gordon & Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Budak, H.; Agarwal, P. On Hermite-Hadamard Type Inequalities for Co-Ordinated Convex Mappings Utilizing Generalized Fractional Integrals; Accepted as an Book Chaper, Fractional Differentiation and its Applications; Springer: Berlin/Heidelberg, Germany, 24 November 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitthiwirattham, T.; Budak, H.; Kara, H.; Ali, M.A.; Reunsumrit, J. On Some New Fractional Ostrowski- and Trapezoid-Type Inequalities for Functions of Bounded Variations with Two Variables. Symmetry 2021, 13, 1724. https://doi.org/10.3390/sym13091724
Sitthiwirattham T, Budak H, Kara H, Ali MA, Reunsumrit J. On Some New Fractional Ostrowski- and Trapezoid-Type Inequalities for Functions of Bounded Variations with Two Variables. Symmetry. 2021; 13(9):1724. https://doi.org/10.3390/sym13091724
Chicago/Turabian StyleSitthiwirattham, Thanin, Hüseyin Budak, Hasan Kara, Muhammad Aamir Ali, and Jiraporn Reunsumrit. 2021. "On Some New Fractional Ostrowski- and Trapezoid-Type Inequalities for Functions of Bounded Variations with Two Variables" Symmetry 13, no. 9: 1724. https://doi.org/10.3390/sym13091724
APA StyleSitthiwirattham, T., Budak, H., Kara, H., Ali, M. A., & Reunsumrit, J. (2021). On Some New Fractional Ostrowski- and Trapezoid-Type Inequalities for Functions of Bounded Variations with Two Variables. Symmetry, 13(9), 1724. https://doi.org/10.3390/sym13091724