Improvement of Properties of Stainless Steel Orthodontic Archwire Using TiO2:Ag Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.1.1. Preparation of TiO2 Sol
2.1.2. Preparation of TiO2:Ag Solution
2.1.3. Preparation of Thin Films
2.1.4. Preparation of TiO2 and TiO2:Ag Powders
2.2. Characterization
2.2.1. Scanning Electron Microscopy
2.2.2. X-ray Diffraction
2.2.3. Electrochemical Measurements
3. Results
3.1. SEM Analysis
3.2. XRD Analysis
3.3. Corrosion Behavior
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mazur, T.; Postek-Stefańska, L.; Wysoczańska-Jankowicz, I.; Pietraszewska, D.; Borkowski, L.; Jodlawska, A.; Bak-Kus, M. Powikłania Leczenia Ortodontycznego Aparatami Stałymi i Ruchomymi u Pacjentów w Wieku Rozwojowym. Implant. Stomatol. Klin. 2008, 9, 34–38. [Google Scholar]
- Kozak, U.; Dunin-Wilczyńska, I. Biofilm w Ortodoncji—Cz. 1. Orthod. Forum 2014, 10, 41–46. [Google Scholar]
- Pasich, E.; Walczewska, M.; Pasich, A.; Marcinkiewicz, J. Mechanism and Risk Factors of Oral Biofilm Formation. Postępy Hig. Med. Doświadczalnej 2013, 67, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.L.; Johnston, W.; Delaney, C.; Short, B.; Butcher, M.C.; Young, T.; Butcher, J.; Riggio, M.; Culshaw, S.; Ramage, G. Polymicrobial Oral Biofilm Models: Simplifying the Complex. J. Med. Microbiol. 2019, 68, 1573–1584. [Google Scholar] [CrossRef] [PubMed]
- Strużycka, I. Biofilm—Współczesne Spojrzenie Na Etiologię Próchnicy. Dent. Forum 2010, 38, 73–79. [Google Scholar]
- Limoli, D.H.; Jones, C.J.; Wozniak, D.J. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. Microbiol. Spectr. 2015, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Vu, B.; Chen, M.; Crawford, R.; Ivanova, E. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation. Molecules 2009, 14, 2535–2554. [Google Scholar] [CrossRef]
- Kim, I.-H.; Park, H.-S.; Kim, Y.K.; Kim, K.-H.; Kwon, T.-Y. Comparative Short-Term In Vitro Analysis of Mutans Streptococci Adhesion on Esthetic, Nickel-Titanium, and Stainless-Steel Arch Wires. Angle Orthod. 2014, 84, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Bradley, T.G.; Berzins, D.W.; Valeri, N.; Pruszynski, J.; Eliades, T.; Katsaros, C. An Investigation into the Mechanical and Aesthetic Properties of New Generation Coated Nickel-Titanium Wires in the as-Received State and after Clinical Use. Eur. J. Orthod. 2014, 36, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, D.L.; Mattos, C.T.; Anna, E.F.S.; Ruellas, A.C.d.O.; Elias, C.N. Cross-Section Dimensions and Mechanical Properties of Esthetic Orthodontic Coated Archwires. Am. J. Orthod. Dentofac. Orthop. 2013, 143, S85–S91. [Google Scholar] [CrossRef]
- Katić, V.; Ćurković, H.O.; Semenski, D.; Baršić, G.; Marušić, K.; Špalj, S. Influence of Surface Layer on Mechanical and Corrosion Properties of Nickel-Titanium Orthodontic Wires. Angle Orthod. 2014, 84, 1041–1048. [Google Scholar] [CrossRef] [Green Version]
- Elayyan, F.; Silikas, N.; Bearn, D. Ex Vivo Surface and Mechanical Properties of Coated Orthodontic Archwires. Eur. J. Orthod. 2008, 30, 661–667. [Google Scholar] [CrossRef]
- Mhaske, A.R.; Shetty, P.C.; Bhat, N.S.; Ramachandra, C.S.; Laxmikanth, S.M.; Nagarahalli, K.; Tekale, P.D. Antiadherent and Antibacterial Properties of Stainless Steel and NiTi Orthodontic Wires Coated with Silver against Lactobacillus Acidophilus—An in Vitro Study. Prog. Orthod. 2015, 16, 40. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, M.B.; Elmorsi, M.A.; Ebeid, E.-Z.M. Nanostructured TiO2 Coated Stainless Steel for Corrosion Protection. J. Nanosci. Nanotechnol. 2016, 16, 9215–9222. [Google Scholar] [CrossRef]
- Mollabashi, V.; Farmany, A.; Alikhani, M.Y.; Sattari, M.; Soltanian, A.R.; Kahvand, P.; Banisafar, Z. Effects of TiO2-Coated Stainless Steel Orthodontic Wires on—Streptococcus Mutans—Bacteria: A Clinical Study. Int. J. Nanomed. 2020, 15, 8759–8766. [Google Scholar] [CrossRef]
- Gonçalves, I.S.; Viale, A.B.; Sormani, N.N.; Pizzol, K.E.D.C.; de Araujo-Nobre, A.R.; de Oliveira, P.C.S.; Barud, H.G.d.O.; Antonio, S.G.; Barud, H.d.S. Antimicrobial Orthodontic Wires Coated with Silver Nanoparticles. Braz. Arch. Biol. Technol. 2020, 63. [Google Scholar] [CrossRef]
- Arango, S.; Peláez-Vargas, A.; García, C. Coating and Surface Treatments on Orthodontic Metallic Materials. Coatings 2012, 3, 1–15. [Google Scholar] [CrossRef]
- Jilani, A.; Abdel-Wahab, M.S.; Hammad, A.H. Advance Deposition Techniques for Thin Film and Coating. 2017. Available online: https://www.intechopen.com/chapters/52684 (accessed on 10 July 2021). [CrossRef] [Green Version]
- Sajjadi, S.P. Sol-Gel Process and Its Application in Nanotechnology. J. Polym. Eng. Technol. 2005, 13, 38–41. [Google Scholar]
- Rao, A. Modeling Bending Response of Shape Memory Alloy Wires/Beams under Superelastic Conditions—A Two Species Thermodynamic Preisach Approach. Int. J. Struct. Chang. Solids 1992, 5, 1–26. [Google Scholar]
- Özyildiz, F.; Uzel, A.; Hazar, A.S.; Güden, M.; Ölmez, S.; Aras, I.; Karaboz, İ. Photocatalytic Antimicrobial Effect of TiO2 Anatase Thin-Film–Coated Orthodontic Arch Wires on 3 Oral Pathogens. Turk. J. Biol. 2014, 38, 289–295. [Google Scholar] [CrossRef]
- Tomás, S.A.; Luna-Resendis, A.; Cortés-Cuautli, L.C.; Jacinto, D. Optical and Morphological Characterization of Photocatalytic TiO2 Thin Films Doped with Silver. Thin Solid Films 2009, 518, 1337–1340. [Google Scholar] [CrossRef]
- Stern, M.; Geary, A.L. Electrochemical Polarization, 1. A Theoretical Analysis of the Shape of Polarization Curves. J. Electrochem. Soc. 1957, 104, 56–63. [Google Scholar] [CrossRef]
- Pérez-Quiroz, J.T.; Terán, J.; Herrera, M.J.; Martínez, M.; Genescá, J. Assessment of Stainless Steel Reinforcement for Concrete Structures Rehabilitation. J. Constr. Steel Res. 2008, 64, 1317–1324. [Google Scholar] [CrossRef]
- Karimi, M.H.S.; Yeganeh, M.; Zaree, S.R.A.; Eskandari, M. Corrosion Behavior of 316L Stainless Steel Manufactured by Laser Powder Bed Fusion (L-PBF) in an Alkaline Solution. Opt. Laser Technol. 2021, 138, 106918. [Google Scholar] [CrossRef]
- Hitchman, M.L.; Meldrum, G.; Tsai, W.T.; Walsh, F.C. An Investigation of the Relative Roles of Kinetics and Transport in Cathodic Inhibition. Corros. Sci. 1994, 36, 1237–1246. [Google Scholar] [CrossRef]
- Yetim, T. An Investigation of the Corrosion Properties of Ag-Doped TiO2-Coated Commercially Pure Titanium in Different Biological Environments. Surf. Coat. Technol. 2017, 309, 790–794. [Google Scholar] [CrossRef]
- Müller, L.K.; Jungbauer, G.; Jungbauer, R.; Wolf, M.; Deschner, J. Biofilm and Orthodontic Therapy. Monogr. Oral Sci. 2021, 29, 201–213. [Google Scholar]
- Benoit, D.S.W.; Sims, K.R.; Fraser, D. Nanoparticles for Oral Biofilm Treatments. ACS Nano 2019, 13, 4869–4875. [Google Scholar] [CrossRef]
- Bącela, J.; Łabowska, M.B.; Detyna, J.; Zięty, A.; Michalak, I. Functional Coatings for Orthodontic Archwires—A Review. Materials 2020, 13, 3257. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, K.; Kailasam, V.; Padmanabhan, S. Evaluation of Titanium Dioxide Coating on Surface Roughness of Nickel-Titanium Archwires and Its Influence on Streptococcus Mutans Adhesion and Enamel Mineralization: A Prospective Clinical Study. Am. J. Orthod. Dentofac. Orthop. 2020, 158, 199–208. [Google Scholar] [CrossRef]
- Ryu, H.-S.; Bae, I.-H.; Lee, K.-G.; Hwang, H.-S.; Lee, K.-H.; Koh, J.-T.; Cho, J.-H. Antibacterial Effect of Silver-Platinum Coating for Orthodontic Appliances. Angle Orthod. 2012, 82, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasso-Ruiz, I.; Velazquez-Enriquez, U.; Scougall-Vilchis, R.J.; Morales-Luckie, R.A.; Sawada, T.; Yamaguchi, R. Silver Nanoparticles in Orthodontics, a New Alternative in Bacterial Inhibition: In Vitro Study. Prog. Orthod. 2020, 21, 24. [Google Scholar] [CrossRef] [PubMed]
- Abraham, K.S.; Jagdish, N.; Kailasam, V.; Padmanabhan, S. Streptococcus Mutans Adhesion on Nickel Titanium (NiTi) and Copper-NiTi Archwires: A Comparative Prospective Clinical Study. Angle Orthod. 2017, 87, 448–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, A.S.; Kaizer, M.R.; Azevedo, M.S.; Ogliari, F.A.; Cenci, M.S.; Moraes, R.R. (Super)Hydrophobic Coating of Orthodontic Dental Devices and Reduction of Early Oral Biofilm Retention. Biomed. Mater. 2015, 10, 065004. [Google Scholar] [CrossRef]
- Ghasemi, T.; Arash, V.; Rabiee, S.M.; Rajabnia, R.; Pourzare, A.; Rakhshan, V. Antimicrobial Effect, Frictional Resistance, and Surface Roughness of Stainless Steel Orthodontic Brackets Coated with Nanofilms of Silver and Titanium Oxide: A Preliminary Study. Microsc. Res. Tech. 2017, 80, 599–607. [Google Scholar] [CrossRef]
- Ogawa, C.M.; Faltin, K.; Maeda, F.A.; Ortolani, C.L.F.; Guaré, R.O.; Cardoso, C.A.B.; Costa, A.L.F. In Vivo Assessment of the Corrosion of Nickel-Titanium Orthodontic Archwires by Using Scanning Electron Microscopy and Atomic Force Microscopy. Microsc. Res. Tech. 2020, 83, 928–936. [Google Scholar] [CrossRef]
- Abalos, C.; Paúl, A.; Mendoza, A.; Solano, E.; Gil, F.J. Influence of Topographical Features on the Fluoride Corrosion of Ni–Ti Orthodontic Archwires. J. Mater. Sci. Mater. Med. 2011, 22, 2813–2821. [Google Scholar] [CrossRef]
- Huang, H.-H. Surface Characterizations and Corrosion Resistance of Nickel-Titanium Orthodontic Archwires in Artificial Saliva of Various Degrees of Acidity. J. Biomed. Mater. Res. Part A 2005, 74A, 629–639. [Google Scholar] [CrossRef]
- Neumann, P.; Bourauel, C.; Jäger, A. Corrosion and Permanent Fracture Resistance of Coated and Conventional Orthodontic Wires. J. Mater. Sci. Mater. Med. 2002, 13, 141–147. [Google Scholar] [CrossRef]
- Kim, H.; Johnson, J.W. Corrosion of Stainless Steel, Nickel-Titanium, Coated Nickel-Titanium, and Titanium Orthodontic Wires. Angle Orthod. 1999, 69, 39–44. [Google Scholar]
- Ćurković, L.; Ćurković, H.O.; Salopek, S.; Renjo, M.M.; Šegota, S. Enhancement of Corrosion Protection of AISI 304 Stainless Steel by Nanostructured Sol–Gel TiO2 Films. Corros. Sci. 2013, 77, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Yerokhin, A.; Khan, R.H.U. Anodising of light alloys. In Surface Engineering of Light Alloys, Anodising of Light Alloys, Aluminium, Magnesium and Titanium Alloys; Woodhead Publishing: Sawston, UK, 2010; pp. 83–109. [Google Scholar]
Group 1 | Control group—it consisted of uncoated stainless steel orthodontic wires |
Group 2 | Experimental group—it consisted of surface-modified stainless steel orthodontic wires coated with TiO2 thin film |
Group 3 | Experimental group—it consisted of surface-modified stainless steel orthodontic wires coated with TiO2:Ag thin film |
Sample | EOCP (mV) | Ecorr (mV) | Ba (mV/dec) | Bc (mV/dec) | ||
---|---|---|---|---|---|---|
Group 1 | 31 | −162 | 0.007 | 129 | 210 | 3.31 |
Group 2 | −270 | −300 | 39.9 | 177 | 716 | 0.01 |
Group 3 | −332 | −285 | 30.0 | 165 | 109 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kielan-Grabowska, Z.; Bącela, J.; Zięty, A.; Seremak, W.; Gawlik-Maj, M.; Kawala, B.; Borak, B.; Detyna, J.; Sarul, M. Improvement of Properties of Stainless Steel Orthodontic Archwire Using TiO2:Ag Coating. Symmetry 2021, 13, 1734. https://doi.org/10.3390/sym13091734
Kielan-Grabowska Z, Bącela J, Zięty A, Seremak W, Gawlik-Maj M, Kawala B, Borak B, Detyna J, Sarul M. Improvement of Properties of Stainless Steel Orthodontic Archwire Using TiO2:Ag Coating. Symmetry. 2021; 13(9):1734. https://doi.org/10.3390/sym13091734
Chicago/Turabian StyleKielan-Grabowska, Zofia, Justyna Bącela, Anna Zięty, Wioletta Seremak, Marta Gawlik-Maj, Beata Kawala, Beata Borak, Jerzy Detyna, and Michał Sarul. 2021. "Improvement of Properties of Stainless Steel Orthodontic Archwire Using TiO2:Ag Coating" Symmetry 13, no. 9: 1734. https://doi.org/10.3390/sym13091734
APA StyleKielan-Grabowska, Z., Bącela, J., Zięty, A., Seremak, W., Gawlik-Maj, M., Kawala, B., Borak, B., Detyna, J., & Sarul, M. (2021). Improvement of Properties of Stainless Steel Orthodontic Archwire Using TiO2:Ag Coating. Symmetry, 13(9), 1734. https://doi.org/10.3390/sym13091734