Lack of Plasma-like Screening Mechanism in Sedimentation of a Non-Brownian Suspension
Abstract
:1. Introduction
2. Methods
2.1. System and Its Theoretical Description
2.2. BBGKY Hierarchy of Equations for Correlation Functions
3. Results
3.1. Long-Range Terms and Screening
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smoluchowski, M. Über die Wechselwirkung von Kugeln, die sich in einer zähen Flüssigkeit bewegen(Mutual interaction of spheres in a viscous medium) 28–29. Bull. Int. Acad. Sei. Cracovie 1911, 2, 182–194. [Google Scholar]
- Smoluchowski, M. On the practical applicability of Stokes law of resistance and its modifications required in certain cases. In Proceedings of the 5th International Congress of Mathematicians, Cambridge, UK, 22–28 August 1912; pp. 195–208. [Google Scholar]
- Beenakker, C.; Mazur, P. On the Smoluchowski Paradox in a Sedimenting Suspension. Phys. Fluids 1985, 28, 767–769. [Google Scholar] [CrossRef] [Green Version]
- Batchelor, G.K. Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 1972, 52, 245. [Google Scholar] [CrossRef] [Green Version]
- Beenakker, C.; Mazur, P. Is sedimentation container-shape dependent? Phys. Fluids 1985, 28, 3203. [Google Scholar] [CrossRef] [Green Version]
- Caflisch, R.; Luke, J.H.C. Variance in the sedimentation speed of a suspension. Phys. Fluids 1985, 28, 759. [Google Scholar] [CrossRef]
- Koch, D.L.; Shaqfeh, E. Screening in sedimenting suspensions. J. Fluid Mech. 1991, 224, 275. [Google Scholar] [CrossRef]
- Ladd, A. Hydrodynamic screening in sedimenting suspensions of non-Brownian spheres. Phys. Rev. Lett. 1996, 76, 1392–1395. [Google Scholar] [CrossRef]
- Ladd, A. Sedimentation of homogeneous suspensions of non-Brownian spheres. Phys. Fluids 1997, 9, 491–499. [Google Scholar] [CrossRef]
- Cunha, F.R.; Sousa, A.J.; Hinch, E.J. Numerical Simulation of Velocity Fluctuations and Dispersion of Sedimentating Particles. Chem. Eng. Commun. 2002, 189, 1105–1129. [Google Scholar] [CrossRef]
- Ladd, A.J.C. Effects of Container Walls on the Velocity Fluctuations of Sedimenting Spheres. Phys. Rev. Lett. 2002, 88, 048301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, M. Screening mechanisms in sedimentation. Phys. Fluids 1999, 11, 754. [Google Scholar] [CrossRef] [Green Version]
- Mucha, P.J.; Tee, S.Y.; Weitz, D.A.; Shraiman, B.I.; Brenner, M. A model for velocity fluctuations in sedimentation. J. Fluid Mech. 2004, 501, 71–104. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.Q.; Ladd, A. Microstructure in a settling suspension of hard spheres. Phys. Rev. E 2004, 69, 050401. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.Q.; Ladd, A. Sedimentation of hard-sphere suspensions at low Reynolds number. J. Fluid Mech. 2005, 525, 73–104. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Schwarz, J.M.; Paulsen, J.D. Hyperuniformity with no fine tuning in sheared sedimenting suspensions. Nat. Commun. 2018, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Koch, D.L. Velocity fluctuations and hydrodynamic diffusion in finite-Reynolds-number sedimenting suspensions. Phys. Fluids 2008, 20, 043305. [Google Scholar] [CrossRef]
- Ramaswamy, S. Issues in the statistical mechanics of steady sedimentation. Adv. Phys. 2001, 50, 297–341. [Google Scholar] [CrossRef]
- Guazzelli, E.; Hinch, J. Fluctuations and instability in sedimentation. Annu. Rev. Fluid Mech. 2010, 43, 97–116. [Google Scholar] [CrossRef] [Green Version]
- Piazza, R. Settled and unsettled issues in particle settling. Rep. Prog. Physics. Phys. Soc. (Great Britain) 2014, 77, 056602. [Google Scholar] [CrossRef]
- Cichocki, B.; Sadlej, K. Stokesian Dynamics—The BBGKY Hierarchy for Correlation Functions. J. Stat. Phys. 2008, 132, 129–151. [Google Scholar] [CrossRef]
- Segrè, P.; Herbolzheimer, E.; Chaikin, P. Long-Range Correlations in Sedimentation. Phys. Rev. Lett. 1997, 79, 2574–2577. [Google Scholar] [CrossRef]
- Segre, P.; Liu, F.; Umbanhowar, P.; Weltz, D. An effective gravitational temperature for sedimentation. Nature 2001, 409, 594–597. [Google Scholar] [CrossRef]
- Bergougnoux, L.; Guazzelli, É. Dilute sedimenting suspensions of spheres at small inertia. J. Fluid Mech. 2021, 914, 1–19. [Google Scholar] [CrossRef]
- Guazzelli, É. Evolution of particle-velocity correlations in sedimentation. Phys. Fluids 2001, 13, 1537–1540. [Google Scholar] [CrossRef]
- Guazzelli, É. Sedimentation of small particles: How can such a simple problem be so difficult? Comptes Rendus-Mec. 2006, 334, 539–544. [Google Scholar] [CrossRef]
- Miguel, M.C.; Pastor-Satorras, R. Velocity fluctuations and hydrodynamic diffusion in sedimentation. Europhys. Lett. 2001, 54, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Tee, S.Y.; Mucha, P.J.; Cipelletti, L.; Manley, S.; Brenner, M.P.; Segre, P.N.; Weitz, D.A. Nonuniversal velocity fluctuations of sedimenting particles. Phys. Rev. Lett. 2002, 89, 054501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Climent, E.; Maxey, M.R. Numerical simulations of random suspensions at finite Reynolds numbers. Int. J. Multiph. Flow 2003, 29, 579–601. [Google Scholar] [CrossRef]
- Bergougnoux, L.; Ghicini, S.; Guazzelli, É.; Hinch, J. Spreading fronts and fluctuations in sedimentation. Phys. Fluids 2003, 15, 1875–1887. [Google Scholar] [CrossRef] [Green Version]
- Gómez, D.C.; Bergougnoux, L.; Guazzelli, É.; Hinch, J. Fluctuations and stratification in sedimentation of dilute suspensions spheres. Phys. Fluids 2009, 21, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gómez, D.C.; Bergougnoux, L.; Hinch, J.; Guazzelli, É. On stratification control of the velocity fluctuations in sedimentation. Phys. Fluids 2007, 19, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Karilla, S.J. Microhydrodynamics: Principles and Selected Applications, Dover ed.; Dover Publications, Inc.: Mineola, NY, USA, 2005. [Google Scholar]
- Lamb, S.H. Hydrodynamics, 6th ed.; Cambridge University Press: Cambridge, UK, 1932. [Google Scholar]
- Jones, R.B.; Schmitz, R. Mobility matrix for arbitrary spherical particles in solution. Phys. A Stat. Mech. Its Appl. 1988, 149, 373–394. [Google Scholar] [CrossRef]
- Felderhof, B.U. Hydrodynamic interaction between two spheres. Phys. A Stat. Mech. Its Appl. 1977, 89, 373–384. [Google Scholar] [CrossRef]
- Felderhof, B.U. Many-body hydrodynamic interactions in suspensions. Phys. A Stat. Mech. Its Appl. 1988, 151, 1–16. [Google Scholar] [CrossRef]
- Cichocki, B.; Felderhof, B.U.; Hinsen, K.; Wajnryb, E.; Bławzdziewicz, J. Friction and mobility of many spheres in Stokes flow. J. Chem. Phys. 1994, 100, 3780. [Google Scholar] [CrossRef] [Green Version]
- Szymczak, P.; Cichocki, B. A diagrammatic approach to response problems in composite systems. J. Stat. Mech. 2008, 2008, P01025. [Google Scholar] [CrossRef]
- Schmitz, R.; Felderhof, B.U. Friction matrix for two spherical particles with hydrodynamic interaction. Phys. A Stat. Mech. Its Appl. 1982, 113, 103–116. [Google Scholar] [CrossRef]
- Cichocki, B.; Felderhof, B.U.; Schmitz, R. Hydrodynamic interactions between two spherical particles. PCH PhysicoChemical Hydrodyn. 1988, 10, 383–403. [Google Scholar]
- Felderhof, B.U.; Jones, R.B. Hydrodynamic scattering theory of flow about a sphere. Phys. A Stat. Mech. Its Appl. 1986, 136, 77–98. [Google Scholar] [CrossRef]
- Felderhof, B.U.; Jones, R.B. Addition theorems for spherical wave solutions of the vector Helmholtz equation. J. Math. Phys. 1987, 28, 836–839. [Google Scholar] [CrossRef]
- Felderhof, B.U.; Jones, R.B. Displacement theorems for spherical solutions of the linear Navier–Stokes equations. J. Math. Phys. 1989, 30, 339–342. [Google Scholar] [CrossRef]
- Ekiel-Jeżewska, M.; Wajnryb, E. Precise multipole method for calculating hydrodynamic interactions between spherical particles in the Stokes flow. In Theoretical Methods for Micro Scale Viscous Flows; Feuillebois, F., Sellier, A., Eds.; Transworld Research Network: Kerala, India, 2009; pp. 127–172. [Google Scholar]
- Damour, T.; Iyer, B.R. Multipole analysis for electromagnetism and linearized gravity with irreducible Cartesian tensors. Phys. Rev. D 1991, 43, 3259–3272. [Google Scholar] [CrossRef] [PubMed]
- Thorne, K.S. Multipole expansions of gravitational radiation. Rev. Mod. Phys. 1980, 52, 299–339. [Google Scholar] [CrossRef]
- Balescu, R. Equilibrium and Nonequilibrium Statistical Mechanics; A Wiley-Interscience Publication: Hoboken, NJ, USA, 1975. [Google Scholar]
- Batchelor, G.K. Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General Theory. J. Fluid Mech. 1982, 119, 379. [Google Scholar] [CrossRef] [Green Version]
- Batchelor, G.K.; Wen, C.S. Sedimentation in a dilute polydisperse system of interacting spheres. Part 2. Numerical results. J. Fluid Mech. 1982, 124, 379. [Google Scholar] [CrossRef] [Green Version]
- Cichocki, B.; Sadlej, K. Steady-state particle distribution of a dilute sedimenting suspension. Europhys. Lett. 2005, 72, 936–942. [Google Scholar] [CrossRef]
- Martin, P. Sum rules in charged fluids. Rev. Mod. Phys. 1988, 60, 1075–1127. [Google Scholar] [CrossRef]
- Abade, G.C.; Cichocki, B. Sedimentation of non-Brownian suspensions. J. Phys. Conf. Ser. 2012, 392, 012002. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sznajder, P.; Cichocki, B.; Ekiel-Jeżewska, M. Lack of Plasma-like Screening Mechanism in Sedimentation of a Non-Brownian Suspension. Symmetry 2022, 14, 63. https://doi.org/10.3390/sym14010063
Sznajder P, Cichocki B, Ekiel-Jeżewska M. Lack of Plasma-like Screening Mechanism in Sedimentation of a Non-Brownian Suspension. Symmetry. 2022; 14(1):63. https://doi.org/10.3390/sym14010063
Chicago/Turabian StyleSznajder, Paweł, Bogdan Cichocki, and Maria Ekiel-Jeżewska. 2022. "Lack of Plasma-like Screening Mechanism in Sedimentation of a Non-Brownian Suspension" Symmetry 14, no. 1: 63. https://doi.org/10.3390/sym14010063
APA StyleSznajder, P., Cichocki, B., & Ekiel-Jeżewska, M. (2022). Lack of Plasma-like Screening Mechanism in Sedimentation of a Non-Brownian Suspension. Symmetry, 14(1), 63. https://doi.org/10.3390/sym14010063