Semi-Adaptive Evolution with Spontaneous Modularity of Half-Chaotic Randomly Growing Autonomous and Open Networks
Abstract
:1. Introduction
1.1. For Mathematicians
1.2. Aims, Circumstances and Objectives
1.3. Form of Results
1.4. Structure of Our Article
2. Model and Algorithm
2.1. Main Terms and Variables
2.2. Half-Chaos
2.3. Network Types
2.4. Earlier and New Stages of Investigation
3. Growth of Autonomous Networks (met8)
3.1. Algorithm and Problems
3.1.1. Algorithm
3.1.2. Problem of Threshold Level Definition due to Oscillation Inside Modules
3.2. Results in Half-Chaos Aspect
3.2.1. Distributions P(d), q, P(k) and Ice
3.2.2. Measured Results
3.2.3. Observations on Crocodiles
3.3. Tendency of Conservativeness of Older Nodes
3.4. Modularity Effects
4. Open Networks (met9)
4.1. Model and Algorithm
4.1.1. Aims
4.1.2. The Dependence of the Results on the Details of the Model, the Nature of This Diagnosis
4.1.3. Assumption of the Developed Simulation Algorithm
4.2. Performed Simulations, Conditions d and L
4.3. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Gecow, A. Life Is Not on the Edge of Chaos but in a Half-Chaos of Not Fully Random Systems. Definition and Simulations of the Half-Chaos in Complex Networks. In A Collection of Papers on Chaos Theory and Its Applications; Bracken, P., Uzumov, D.I., Eds.; IntechOpen: London, UK, 2021; p. 122. [Google Scholar] [CrossRef]
- Gecow, A. Life evolves in experimentally confirmed ‘half-chaos’ of not fully random networks, but not ‘on the edge of chaos’. In CHAOS 2020 Proceedings; Skiadas, C.H., Ed.; ISAST: Oakland, CA, USA, 2020; pp. 259–270. [Google Scholar]
- Gecow, A.; Nowostawski, M. Modelling Damage Propagation in Complex Networks: Life Exists in Half-Chaos. In Complex Networks XII. CompleNet-Live 2021; Teixeira, A.S., Pacheco, D., Oliveira, M., Barbosa, H., Gonçalves, B., Menezes, R., Eds.; Springer Proceedings in Complexity; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Gecow, A. Report of Simulation Investigations, a Base of Statement That Life Evolves in the Half-Chaos. 2016. Available online: http://vixra.org/abs/1603.0220 (accessed on 3 January 2022).
- Gecow, A. Report of Simulation Investigations, Part II, a Growth of Half-Chaotic Autonomous Networks. 2017. Available online: http://viXra.org/abs/1711.0467 (accessed on 3 January 2022).
- Derrida, B.; Pomeau, Y. Random Networks of Automata: A Simple Annealed Approximation. Europhys. Lett. 1986, 1, 45–49. [Google Scholar] [CrossRef]
- Derrida, B.; Weisbuch, G. Evolution of overlaps between configurations in random Boolean networks. J. Phys. 1986, 47, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, S.A. Requirements for Evolvability in Complex Systems—Orderly Dynamics and Frozen Components. Phys. D 1990, 42, 135–152. [Google Scholar] [CrossRef]
- Kauffman, S.A. The Origins of Order: Self-Organization and Selection in Evolution; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Kauffman, S.A. At Home in the Universe; Oxford University Press: New York, NY, USA, 1996. [Google Scholar]
- Albert, R.; Barabasi, A. Dynamics of Complex Systems: Scaling Laws for the Period of Boolean Networks. Phys. Rev. Lett. 2000, 84, 5660–5663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, R.; Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef] [Green Version]
- Aldana, M.; Coppersmith, S.; Kadanoff, L.P. Boolean Dynamics with Random Couplings. In Perspectives and Problems in Nonlinear Science; Kaplan, E., Marsden, J.E., Sreenivasan, K.R., Eds.; Applied Mathematical Sciences Series; Springer: Berlin, Germany, 2003. [Google Scholar]
- Aldana, M. Dynamics of Boolean Networks with Scale Free Topology. Phys. D 2003, 185, 45–66. [Google Scholar] [CrossRef]
- Rämö, P.; Kesseli, J.; Yli-Harja, O. Perturbation avalanches and criticality in gene regulatory networks. J. Theor. Biol. 2006, 242, 164–170. [Google Scholar] [CrossRef]
- Fronczak, P.; Fronczak, A.; Hołyst, J.A. Kauffman Boolean model in undirected scale-free networks. Phys. Rev. E 2008, 77, 036119. [Google Scholar] [CrossRef] [Green Version]
- Nghe, P.; Hordijk, W.; Kauffman, S.A.; Walker, S.I.; Schmidt, F.J.; Kemble, H.; Yeates, J.A.M.; Lehman, N. Prebiotic network evolution: Six key parameters. Mol. BioSyst. 2015, 11, 3206–3217. [Google Scholar] [CrossRef]
- Gecow, A.; Hoffman, A. Self-improvement in a complex cybernetic system and its implications for biology. Acta Biotheor. 1983, 32, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Gecow, A.; Nowostawski, M.; Purvis, M.K. Structural tendencies in complex systems development and their implication for software systems. J. UCS 2005, 11, 327–356. [Google Scholar]
- Gecow, A. Structural Tendencies - effects of adaptive evolution of complex (chaotic) systems. Int. J. Mod. Phys. C 2008, 19, 647–664. [Google Scholar] [CrossRef] [Green Version]
- Gecow, A. A certain complexity threshold during growth of functioning networks. In Proceedings of the 2008 First International Conference on Complexity and Intelligence of the Artificial and Natural Complex Systems. Medical Applications of the Complex Systems. Biomedical Computing, Tirgu Mures, Romania, 8–10 November 2008; pp. 69–76. [Google Scholar]
- Gecow, A. Emergence of Chaos and Complexity During System Growth. In From System Complexity to Emergent Properties; Aziz-Alaoui, M.A., Bertelle, C., Eds.; Understanding Complex Systems Series; Springer: Berlin, Germany, 2009; pp. 115–154. [Google Scholar]
- Gecow, A. Emergence of Growth and Structural Tendencies During Adaptive Evolution of System. In From System Complexity to Emergent Properties; Aziz-Alaoui, M.A., Bertelle, C., Eds.; Understanding Complex Systems Series; Springer: Berlin, Germany, 2009; pp. 211–241. [Google Scholar]
- Gecow, A. The conditions of structural tendencies. In Modelling and Analysis of Complex Interacting Systems; Aziz-Alaoui, M.A., Bertelle, C., Eds.; DCDIS-B Special Issue; Watam Press: Waterloo, ON, Canada, 2009; pp. 551–572. [Google Scholar]
- Gecow, A. Complexity Threshold for Functioning Directed Networks in Damage Size Distribution. 2010. Available online: https://arxiv.org/abs/1004.3795 (accessed on 3 January 2022).
- Gecow, A. Emergence of Matured Chaos During Network Growth, Place for Adaptive Evolution and More of Equally Probable Signal Variants as an Alternative to Bias p. In Chaotic Systems; Tlelo-Cuautle, E., Ed.; Intech: London, UK, 2011; pp. 280–310. ISBN 978-953-307-564-8. [Google Scholar] [CrossRef] [Green Version]
- Grassi, G. Chaos in the Real World: Recent Applications to Communications, Computing, Distributed Sensing, Robotic Motion, Bio-Impedance Modelling and Encryption Systems. Symmetry 2021, 13, 2151. [Google Scholar] [CrossRef]
- Martínez-Giménez, F.; Peris, A.; Rodenas, F. Chaos on Fuzzy Dynamical Systems. Mathematics 2021, 9, 2629. [Google Scholar] [CrossRef]
- Wang, Q.; Robnik, M. Multifractality in Quasienergy Space of Coherent States as a Signature of Quantum Chaos. Entropy 2021, 23, 1347. [Google Scholar] [CrossRef]
- Manera, M. Perspectives on Complexity, Chaos and Thermodynamics in Environmental Pathology. Int. J. Environ. Res. Public Health 2021, 18, 5766. [Google Scholar] [CrossRef]
- Kauffman, S.A. Boolean systems, adaptive automata, evolution. In Discovered Systems and Biological Organization; Bienenstock, E., Fogelman-Soulie, F., Weisbuch, G., Eds.; Series F: Computer and System Sciences 20; Springer: New York, NY, USA, 1986. [Google Scholar]
- Kauffman, S.A.; Peterson, C.; Samuelsson, B.; Troein, C. Genetic networks with canalyzing Boolean rules are always stable. Proc. Natl. Acad. Sci. USA 2004, 101, 17102–17107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shmulevich, I.; Kauffman, S.A.; Aldana, M. Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc. Natl. Acad. Sci. USA 2005, 102, 13439–13444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villani, M.; La Rocca, L.; Kauffman, S.A.; Serra, R. Dynamical Criticality in Gene Regulatory Networks. Complex. Hindawi 2018, 2018, 1–14. [Google Scholar] [CrossRef]
- Turnbull, L.; Hütt, M.-T.; Ioannides, A.A.; Kininmonth, S.; Poeppl, R.; Tockner, K.; Bracken, L.J.; Keesstra, S.; Liu, L.; Masselink, R.; et al. Connectivity and complex systems: Learning from a multi-disciplinary perspective. Appl. Netw. Sci. 2018, 3, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Erdős, P.; Rényi, A. On the evolution of random graphs. In Publication of the Mathematical Institute of the Hungarian Academy of Science; Publication of the Mathematical Institute of the Hungarian Academy of Sciences: Budapest, Hungary, 1960; pp. 17–61. [Google Scholar]
- Barabási, A.-L.; Albert, R.; Jeong, H. Mean-field theory for scale-free random networks. Phys. A 1999, 272, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Iantovics, L.B.; Enăchescu, C.; Filip, F.G. (Eds.) . Complexity in Artificial and Natural Systems; “Petru Maior” University Publishing House: Targu Mures, Romania, 2008; ISBN 978-973-7794-76-5. [Google Scholar]
- Iantovics, L.B.; Radoiu, D.; Marusteri, M.; Dehmer, M. (Eds.) Special Issue on Complexity. In Sciences and Artificial Intelligence; BRAIN. Broad Research in Artificial Intelligence and Neuroscience; EduSoft: Bacau, Romania, 2010; ISSN 2067-3957. [Google Scholar]
- Iantovics, L.B.; Hluchý, L.; Kountchev, R. (Eds.) Special Issue on Understanding Complex Systems; Acta Universitatis Apulensis: Alba Iulia, Romania, 2011; ISSN 1582-5329. [Google Scholar]
- Teixeira, A.S.; Pacheco, D.; Oliveira, M.; Barbosa, H.; Gonçalves, B.; Menezes, R. (Eds.) Complex Networks XII. CompleNet-Live 2021; Springer Proceedings in Complexity; Springer: Cham, Switzerland, 2011. [Google Scholar]
- Skiadas, C.H.; Dimotikalis, Y. (Eds.) 13th Chaotic Modeling and Simulation International Conference; Springer Proceedings in Complexity; Springer: Cham, Switzerland, 2021; ISSN 2213-8684. [Google Scholar]
- Altenberg, L. Modularity in Evolution: Some Low-Level Questions. In Modularity: Understanding the Development and Evolution of Natural Complex Systems; Callebaut, W., Rasskin-Gutman, D., Eds.; The Vienna Series in Theoretical Biology; MIT Press: Cambridge, MA, USA, 2005; pp. 99–128. [Google Scholar]
- Sun, H.; Jie, W.; Loo, J.; Wang, L.Z.; Ma, S.G.; Han, G.; Wang, Z.M.; Xing, W. A parallel self-organizing overlapping community detection algorithm based on swarm intelligence for large scale complex networks. Futur. Gener. Comput. Syst. 2018, 89, 265–285. [Google Scholar] [CrossRef]
- Kauffman, S.A. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 1969, 22, 437–467. [Google Scholar] [CrossRef]
- Luque, B.; Sole, R.V. Phase transitions in random networks: Simple analytic determination of critical points. Phys. Rev. E 1997, 55, 257–260. [Google Scholar] [CrossRef] [Green Version]
- Serra, R.; Villani, M.; Graudenzi, A.; Kauffman, S.A. Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. J Theor. Biol. 2007, 246, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Sole, R.V.; Luque, B.; Kauffman, S. Phase Transitions in Random Networks with Multiple States; Technical Report 00-02-011; Santa Fe Institute: Santa Fe, NM, USA, 2000. [Google Scholar]
- Serra, R.; Villani, M.; Semeria, A. Genetic network models and statistical properties of gene expression data in knock-out experiments. J. Theor. Biol. 2004, 227, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Ishii, M.; Gores, J.; Teuscher, C. On the sparse percolation of damage in finite non-synchronous random Boolean networks. Phys. D (Nonlinear Phenom.) 2019, 393, 84–91. [Google Scholar] [CrossRef]
- Escobar, L.A.; Kim, H.; Gershenson, C. Effects of Antimodularity and Multiscale Influence in Random Boolean Networks. Complexity 2019, 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pontes-Filho, S.; Lind, P.; Yazidi, A.; Zhang, J.H.; Hammer, H.; Mello, G.B.M.; Sandvig, I.; Tufte, G.; Nichele, S. A neuro-inspired general framework for the evolution of stochastic dynamical systems: Cellular automata, random Boolean networks and echo state networks towards criticality. Cogn. Neurodyn. 2020, 14, 657–674. [Google Scholar] [CrossRef]
- Serra, R.; Villani, M.; Agostini, L. On the dynamics of random Boolean networks with scale-free outgoing connections. Phys. A 2004, 339, 665–673. [Google Scholar] [CrossRef]
- Iguchi, K.; Kinoshita, S.-I.; Yamada, H.S. Boolean dynamics of Kauffman models with a scale-free network. J. Theor. Biol. 2007, 247, 138–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tez, M. Genome’s Chaotic Behavior for Adaptation may explain Carcinogenesis! Suggestion from Surgical Oncologist. J. Cancer Biol. Res. 2014, 2, 1047. [Google Scholar]
- Tez, M. Organismic Perspective of Carcinogenesis. 2021; preprint. [Google Scholar] [CrossRef]
s140\pass | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
loc.cl.size | 68 | 95 | 143 | 210 | 251 | 309 | 353 | 306 |
3/4 loc.cl | 51 | 71 | 108 | 158 | 188 | 231 | 265 | 229 |
7 f | 1.2x | 1y | 1z | 2y | 2z |
m > m | 1.46 | 0.67 | 0.56 | 0.94 | 0.80 |
r > m | 0.76 | 0.99 | 1.02 | 0.77 | 0.80 |
m > r | 0.27 | 1.39 | 1.19 | 1.67 | 1.45 |
r > r | 1.52 | 1.46 | 1.61 | 1.27 | 1.45 |
7 s | 1.2x | 1y | 1z | 2y | 2z |
m > m | 1.59 | 0.44 | 0.31 | 0.86 | 0.59 |
r > m | 0.67 | 0.91 | 0.90 | 0.60 | 0.59 |
m > r | 0.27 | 1.28 | 0.96 | 2.74 | 1.96 |
r > r | 1.56 | 2.09 | 2.96 | 1.36 | 1.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gecow, A.; Iantovics, L.B. Semi-Adaptive Evolution with Spontaneous Modularity of Half-Chaotic Randomly Growing Autonomous and Open Networks. Symmetry 2022, 14, 92. https://doi.org/10.3390/sym14010092
Gecow A, Iantovics LB. Semi-Adaptive Evolution with Spontaneous Modularity of Half-Chaotic Randomly Growing Autonomous and Open Networks. Symmetry. 2022; 14(1):92. https://doi.org/10.3390/sym14010092
Chicago/Turabian StyleGecow, Andrzej, and Laszlo Barna Iantovics. 2022. "Semi-Adaptive Evolution with Spontaneous Modularity of Half-Chaotic Randomly Growing Autonomous and Open Networks" Symmetry 14, no. 1: 92. https://doi.org/10.3390/sym14010092
APA StyleGecow, A., & Iantovics, L. B. (2022). Semi-Adaptive Evolution with Spontaneous Modularity of Half-Chaotic Randomly Growing Autonomous and Open Networks. Symmetry, 14(1), 92. https://doi.org/10.3390/sym14010092