Comparative Study of SnO2 and ZnO Semiconductor Nanoparticles (Synthesized Using Randia echinocarpa) in the Photocatalytic Degradation of Organic Dyes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extract Obtention
2.2. Nanoparticles Synthesis
2.3. Characterization
2.4. Photodegradation
3. Results and Discussion
3.1. FT-IR
3.2. XRD
3.3. TEM
3.4. Optical Analysis
3.5. Formation Mechanism
3.6. Contaminant Photodegradation
3.7. Photodegradation Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pascariu, P.; Tudose, I.V.; Suchea, M.; Koudoumas, E.; Fifere, N.; Airinei, A. Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications. Appl. Surf. Sci. 2018, 448, 481–488. [Google Scholar] [CrossRef]
- Punia, P.; Bharti, M.K.; Chalia, S.; Dhar, R.; Ravelo, B.; Thakur, P.; Thakur, A. Recent advances in synthesis, characterization, and applications of nanoparticles for contaminated water treatment—A review. Ceram. Int. 2021, 47, 1526–1550. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P.; Li, X. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chin. J. Catal. 2022, 43, 178–214. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, S.; Shi, R.; Waterhouse, G.I.N.; Tang, J.; Zhang, T. Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Mater. Today 2020, 34, 78–91. [Google Scholar] [CrossRef]
- Wali, L.A.; Alwan, A.M.; Dheyab, A.B.; Hashim, D.A. Excellent fabrication of Pd-Ag NPs/PSi photocatalyst based on bimetallic nanoparticles for improving methylene blue photocatalytic degradation. Optik 2019, 179, 708–717. [Google Scholar] [CrossRef]
- Xie, R.; Fang, K.; Liu, Y.; Chen, W.; Fan, J.; Wang, X.; Ren, Y.; Song, Y. Z-scheme In2O3/WO3 heterogeneous photocatalysts with enhanced visible-light-driven photocatalytic activity toward degradation of organic dyes. J. Mater. Sci. 2020, 55, 11919–11937. [Google Scholar] [CrossRef]
- Yang, X.; Wen, Z.; Wu, Z.; Luo, X. Synthesis of ZnO/ZIF-8 hybrid photocatalysts derived from ZIF-8 with enhanced photocatalytic activity. Inorg. Chem. Front. 2018, 5, 687–693. [Google Scholar] [CrossRef]
- Matussin, S.; Harunsani, M.H.; Tan, A.L.; Khan, M.M. Plant extract-mediated SnO2 nanoparticles: Synthesis and applications. ACS Sustain. Chem. Eng. 2020, 8, 3040–3054. [Google Scholar]
- Zhao, D.; Wu, X. Nanoparticles assembled SnO2 nanosheet photocatalysts for wastewater purification. Mater. Lett. 2018, 210, 354–357. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Ur Rahman, A.; Tajuddin; Husen, A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res. Lett. 2018, 13, 141. [Google Scholar] [CrossRef]
- Chandekar, K.V.; Shkir, M.; Khan, A.; Al-Shehri, B.M.; Hamdy, M.S.; AlFaify, S.; El-Toni, M.A.; Aldalbahi, A.; Ansari, A.A.; Ghaithan, H. A facile one-pot flash combustion synthesis of La@ZnO nanoparticles and their characterizations for optoelectronic and photocatalysis applications. J. Photochem. Photobiol. A Chem. 2020, 395, 112465. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, T.; Kim, K.-H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef]
- Luque, P.A.; Garrafa-Gálvez, H.E.; Nava, O.; Olivas, A.; Martínez-Rosas, M.E.; Vilchis-Nestor, A.R.; Villegas-Fuentes, A.; Chinchillas-Chinchillas, M.J. Efficient sunlight and UV photocatalytic degradation of Methyl Orange, Methylene Blue and Rhodamine B, using Citrus×paradisi synthesized SnO2 semiconductor nanoparticles. Ceram. Int. 2021, 47, 23861–23874. [Google Scholar] [CrossRef]
- Jadhav, D.B.; Kokate, R.D. Green synthesis of SnO2 using green papaya leaves for nanoelectronics (LPG sensing) application. Mater. Today Proc. 2020, 26, 998–1004. [Google Scholar] [CrossRef]
- Haq, S.; Rehman, W.; Waseem, M.; Shah, A.; Khan, A.R.; Rehman, M.U.; Ahmad, P.; Khan, B.; Ali, G. Green synthesis and characterization of tin dioxide nanoparticles for photocatalytic and antimicrobial studies. Mater. Res. Express 2020, 7, 25012. [Google Scholar] [CrossRef]
- Najjar, M.; Hosseini, H.A.; Masoudi, A.; Sabouri, Z.; Mostafapour, A.; Khatami, M.; Darroudi, M. Green chemical approach for the synthesis of SnO2 nanoparticles and its application in photocatalytic degradation of Eriochrome Black T dye. Optik 2021, 242, 167152. [Google Scholar] [CrossRef]
- Sadiq, H.; Sher, F.; Sehar, S.; Lima, E.C.; Zhang, S.; Iqbal, H.M.N.; Zafar, F.; Nuhanović, M. Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. J. Mol. Liq. 2021, 335, 116567. [Google Scholar] [CrossRef]
- Selim, Y.A.; Azb, M.A.; Ragab, I.H.M.; Abd El-Azim, M. Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Deverra tortuosa and their Cytotoxic Activities. Sci. Rep. 2020, 10, 3445. [Google Scholar] [CrossRef]
- Pillai, A.M.; Sivasankarapillai, V.S.; Rahdar, A.; Joseph, J.; Sadeghfar, F.; Anuf, A.R.; Rajesh, K.; Kyzas, G.Z. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J. Mol. Struct. 2020, 1211, 128107. [Google Scholar] [CrossRef]
- Cano-Campos, M.C.; Díaz-Camacho, S.P.; Uribe-Beltrán, M.J.; López-Angulo, G.; Montes-Avila, J.; Paredes-López, O.; Delgado-Vargas, F. Bio-guided fractionation of the antimutagenic activity of methanolic extract from the fruit of Randia echinocarpa (Sessé et Mociño) against 1-nitropyrene. Food Res. Int. 2011, 44, 3087–3093. [Google Scholar] [CrossRef]
- Valenzuela-Atondo, D.A.; Delgado-Vargas, F.; López-Angulo, G.; Calderón-Vázquez, C.L.; Orozco-Cárdenas, M.L.; Cruz-Mendívil, A. Antioxidant activity of in vitro plantlets and callus cultures of Randia echinocarpa, a medicinal plant from northwestern Mexico. Vitro Cell. Dev. Biol.-Plant 2020, 56, 440–446. [Google Scholar] [CrossRef]
- Gil-Avilés, M.R.; Montes-Avila, J.; Díaz-Camacho, S.P.; Picos-Salas, M.A.; López-Angulo, G.; Reynoso-Soto, E.A.; Osuna-Martínez, L.U.; Delgado-Vargas, F. Soluble melanins of the Randia echinocarpa fruit—Structural characteristics and toxicity. J. Food Biochem. 2019, 43, e13077. [Google Scholar] [CrossRef]
- Mani, R.; Vivekanandan, K.; Subiramaniyam, N.P. Photocatalytic activity of different organic dyes by using pure and Fe doped SnO2 nanopowders catalyst under UV light irradiation. J. Mater. Sci. Mater. Electron. 2017, 28, 13846–13852. [Google Scholar] [CrossRef]
- Hassan, N.; Shahat, A.; El-Didamony, A.; El-Desouky, M.G.; El-Bindary, A.A. Synthesis and characterization of ZnO nanoparticles via zeolitic imidazolate framework-8 and its application for removal of dyes. J. Mol. Struct. 2020, 1210, 128029. [Google Scholar] [CrossRef]
- Montes-Avila, J.; Ojeda-Ayala, M.; López-Angulo, G.; Pío-León, J.F.; Díaz-Camacho, S.P.; Ochoa-Terán, A.; Delgado-Vargas, F. Physicochemical properties and biological activities of melanins from the black-edible fruits Vitex mollis and Randia echinocarpa. J. Food Meas. Charact. 2018, 12, 1972–1980. [Google Scholar] [CrossRef]
- Ishwarya, R.; Vaseeharan, B.; Kalyani, S.; Banumathi, B.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Al-anbr, M.N.; Khaled, J.M.; Benelli, G. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J. Photochem. Photobiol. B Biol. 2018, 178, 249–258. [Google Scholar] [CrossRef]
- Babu, B.; Kim, J.; Yoo, K. Nanocomposite of SnO2 quantum dots and Au nanoparticles as a battery-like supercapacitor electrode material. Mater. Lett. 2022, 309, 131339. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Sakthivel, P.; Sankaranarayanan, R.K. Influence of Sn4+ ion on band gap tailoring, optical, structural and dielectric behaviors of ZnO nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120487. [Google Scholar] [CrossRef]
- Karthik, K.V.; Raghu, A.V.; Reddy, K.R.; Ravishankar, R.; Sangeeta, M.; Shetti, N.P.; Reddy, C.V. Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere 2022, 287, 132081. [Google Scholar] [CrossRef]
- Buniyamin, I.; Akhir, R.M.; Asli, N.A.; Khusaimi, Z.; Mahmood, M.R. Effect of calcination time on biosynthesised SnO2 nanoparticles using bioactive compound from leaves extract of Chromolaena Odorata. AIP Conf. Proc. 2021, 2368, 20006. [Google Scholar] [CrossRef]
- Deshmukh, L.D. Microwave Assisted ZnO Nanoparticles by Simple Precipitation Method: A Novel Approach. Int. J. Nanosci. 2020, 20, 2150010. [Google Scholar] [CrossRef]
- Rubin Pedrazzo, A.; Cecone, C.; Morandi, S.; Manzoli, M.; Bracco, P.; Zanetti, M. Nanosized SnO2 Prepared by Electrospinning: Influence of the Polymer on Both Morphology and Microstructure. Polymers 2021, 13, 977. [Google Scholar] [CrossRef] [PubMed]
- Mallick, H.K.; Zhang, Y.; Pradhan, J.; Sahoo, M.P.K.; Pattanaik, A.K. Influence of particle size and defects on the optical, magnetic and electronic properties of Al doped SnO2 nanoparticles. J. Alloys Compd. 2021, 854, 156067. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, Z.; Zhao, H. Flame spray pyrolysis synthesis and H2S sensing properties of CuO-doped SnO2 nanoparticles. Proc. Combust. Inst. 2021, 38, 6743–6751. [Google Scholar] [CrossRef]
- Yang, T.; Gu, K.; Zhu, M.; Lu, Q.; Zhai, C.; Zhao, Q.; Yang, X.; Zhang, M. ZnO-SnO2 heterojunction nanobelts: Synthesis and ultraviolet light irradiation to improve the triethylamine sensing properties. Sens. Actuators B Chem. 2019, 279, 410–417. [Google Scholar] [CrossRef]
- Murtaza, A.; Zuo, W.; Song, X.; Ghani, A.; Saeed, A.; Yaseen, M.; Tian, F.; Yang, S. Robust ferromagnetism in rare-earth and transition metal co-doped ZnO nanoparticles for spintronics applications. Mater. Lett. 2022, 310, 131479. [Google Scholar] [CrossRef]
- Aldeen, T.S.; Mohamed, H.E.A.; Maaza, M. ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. J. Phys. Chem. Solids 2022, 160, 110313. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Kumar, B.G.; Rajendran, S.; Qin, J.; Vadivel, S.; Durgalakshmi, D.; Gracia, F.; Soto-Moscoso, M.; Orooji, Y.; Karimi, F. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J. Mol. Liq. 2020, 314, 113588. [Google Scholar] [CrossRef]
- Pazouki, S.; Memarian, N. Effects of Hydrothermal temperature on the physical properties and anomalous band gap behavior of ultrafine SnO2 nanoparticles. Optik 2021, 246, 167843. [Google Scholar] [CrossRef]
- Ali, R.N.; Naz, H.; Li, J.; Zhu, X.; Liu, P.; Xiang, B. Band gap engineering of transition metal (Ni/Co) codoped in zinc oxide (ZnO) nanoparticles. J. Alloys Compd. 2018, 744, 90–95. [Google Scholar] [CrossRef]
- Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett. 2021, 19, 355–374. [Google Scholar] [CrossRef]
- Singh, A.K.; Pal, P.; Gupta, V.; Yadav, T.P.; Gupta, V.; Singh, S.P. Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba. Mater. Chem. Phys. 2018, 203, 40–48. [Google Scholar] [CrossRef]
- Hunashimarad, B.G.; Bhat, J.S.; Raghavendra, P.V.; Bhajantri, R.F. Photoluminescence in Strontium doped tin oxide thin films. Opt. Mater. 2021, 114, 110962. [Google Scholar] [CrossRef]
- Moses, A.; Baral, S.S. Ceria-doped SnO2 nanocubes for solar light–driven photocatalytic hydrogen production. Environ. Sci. Pollut. Res. 2022. Epub ahead of printing. [Google Scholar] [CrossRef]
- Nachiar, R.A.; Muthukumaran, S. Structural, photoluminescence and magnetic properties of Cu-doped SnO2 nanoparticles co-doped with Co. Opt. Laser Technol. 2019, 112, 458–466. [Google Scholar] [CrossRef]
- Chitradevi, T.; Lenus, A.J.; Jaya, N.V. Structure, morphology and luminescence properties of sol-gel method synthesized pure and Ag-doped ZnO nanoparticles. Mater. Res. Express 2019, 7, 15011. [Google Scholar] [CrossRef]
- Kumawat, A.; Chattopadhyay, S.; Verma, R.K.; Misra, K.P. Eu doped ZnO nanoparticles with strong potential of thermal sensing and bioimaging. Mater. Lett. 2022, 308, 131221. [Google Scholar] [CrossRef]
- Liu, M.; Chen, R.; Adamo, G.; MacDonald, K.F.; Sie, E.J.; Sum, T.C.; Zheludev, N.I.; Sun, H.; Fan, H.J. Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer. Nanophotonics 2013, 2, 153–160. [Google Scholar] [CrossRef]
- Ma, Y.; Choi, T.-W.; Cheung, S.H.; Cheng, Y.; Xu, X.; Xie, Y.-M.; Li, H.-W.; Li, M.; Luo, H.; Zhang, W.; et al. Charge transfer-induced photoluminescence in ZnO nanoparticles. Nanoscale 2019, 11, 8736–8743. [Google Scholar] [CrossRef]
- Bandeira, M.; Giovanela, M.; Roesch-Ely, M.; Devine, D.M.; da Silva Crespo, J. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustain. Chem. Pharm. 2020, 15, 100223. [Google Scholar] [CrossRef]
- Suresh, J.; Pradheesh, G.; Alexramani, V.; Sundrarajan, M.; Hong, S.I. Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 15008. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, H.; Kukkar, D.; Mukamia, V.K.; Kumar, S.; Rawat, M. Green synthesis of SnO2 NPs for solar light induced photocatalytic applications. Mater. Res. Express 2019, 6, 115007. [Google Scholar] [CrossRef]
- Ebrahimian, J.; Mohsennia, M.; Khayatkashani, M. Photocatalytic-degradation of organic dye and removal of heavy metal ions using synthesized SnO2 nanoparticles by Vitex agnus-castus fruit via a green route. Mater. Lett. 2020, 263, 127255. [Google Scholar] [CrossRef]
- Rambabu, K.; Bharath, G.; Banat, F.; Show, P.L. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J. Hazard. Mater. 2021, 402, 123560. [Google Scholar] [CrossRef]
- Honarmand, M.; Golmohammadi, M.; Naeimi, A. Biosynthesis of tin oxide (SnO2) nanoparticles using jujube fruit for photocatalytic degradation of organic dyes. Adv. Powder Technol. 2019, 30, 1551–1557. [Google Scholar] [CrossRef]
- Nguyen, D.T.C.; Le, H.T.N.; Nguyen, T.T.; Nguyen, T.T.T.; Bach, L.G.; Nguyen, T.D.; Van Tran, T. Multifunctional ZnO nanoparticles bio-fabricated from Canna indica L. flowers for seed germination, adsorption, and photocatalytic degradation of organic dyes. J. Hazard. Mater. 2021, 420, 126586. [Google Scholar] [CrossRef]
- Chen, Y.; Murakami, N.; Chen, H.-Y.; Sun, J.; Zhang, Q.-T.; Wang, Z.-F.; Ohno, T.; Zhang, M. Improvement of photocatalytic activity of high specific surface area graphitic carbon nitride by loading a co-catalyst. Rare Met. 2019, 38, 468–474. [Google Scholar] [CrossRef]
- Chang, J.S.; Strunk, J.; Chong, M.N.; Poh, P.E.; Ocon, J.D. Multi-dimensional zinc oxide (ZnO) nanoarchitectures as efficient photocatalysts: What is the fundamental factor that determines photoactivity in ZnO? J. Hazard. Mater. 2020, 381, 120958. [Google Scholar] [CrossRef]
- Wang, X.; Xu, M.; Liu, L.; Cui, Y.; Geng, H.; Zhao, H.; Liang, B.; Yang, J. Effects specific surface area and oxygen vacancy on the photocatalytic properties of mesoporous F doped SnO2 nanoparticles prepared by hydrothermal method. J. Mater. Sci. Mater. Electron. 2019, 30, 16110–16123. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Soliman, A.I.A.; Abdel-Wahab, A.-M.A. Hierarchical Porous Zeolitic Imidazolate Frameworks (ZIF-8) and ZnO@ N-doped Carbon for Selective Adsorption and Photocatalytic Degradation of Organic Pollutants. RSC Adv. 2022, 12, 7075–7084. [Google Scholar]
- Georgouvelas, D.; Abdelhamid, H.N.; Li, J.; Edlund, U.; Mathew, A.P. All-cellulose functional membranes for water treatment: Adsorption of metal ions and catalytic decolorization of dyes. Carbohydr. Polym. 2021, 264, 118044. [Google Scholar] [CrossRef] [PubMed]
- Alharthi, M.N.; Ismail, I.; Bellucci, S.; Salam, M.A. Green synthesis of zinc oxide nanoparticles by Ziziphus jujuba leaves extract: Environmental application, kinetic and thermodynamic studies. J. Phys. Chem. Solids 2021, 158, 110237. [Google Scholar] [CrossRef]
- Sagadevan, S.; Lett, J.A.; Alshahateet, S.F.; Fatimah, I.; Weldegebrieal, G.K.; Le, M.-V.; Leonard, E.; Paiman, S.; Soga, T. Photocatalytic degradation of methylene blue dye under direct sunlight irradiation using SnO2 nanoparticles. Inorg. Chem. Commun. 2022, 141, 109547. [Google Scholar] [CrossRef]
- Ahmad, M.; Rehman, W.; Khan, M.M.; Qureshi, M.T.; Gul, A.; Haq, S.; Ullah, R.; Rab, A.; Menaa, F. Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B. J. Environ. Chem. Eng. 2021, 9, 104725. [Google Scholar] [CrossRef]
- Bharathi, D.; AlSalhi, M.S.; Devanesan, S.; Nandagopal, J.G.T.; Kim, W.; Ranjithkumar, R. Photocatalytic degradation of Rhodamine B using green-synthesized ZnO nanoparticles from Sechium edule polysaccharides. Appl. Nanosci. 2022, 12, 2477–2487. [Google Scholar] [CrossRef]
- Luque, P.A.; Chinchillas-Chinchillas, M.J.; Nava, O.; Lugo-Medina, E.; Martínez-Rosas, M.E.; Carrillo-Castillo, A.; Vilchis-Nestor, A.R.; Madrigal-Muñoz, L.E.; Garrafa-Gálvez, H.E. Green synthesis of tin dioxide nanoparticles using Camellia sinensis and its application in photocatalytic degradation of textile dyes. Optik 2021, 229, 166259. [Google Scholar] [CrossRef]
- Yaseen, M.; Humayun, M.; Khan, A.; Idrees, M.; Shah, N.; Bibi, S. Photo-Assisted Removal of Rhodamine B and Nile Blue Dyes from Water Using CuO–SiO2 Composite. Molecules 2022, 27, 5343. [Google Scholar] [CrossRef]
- Sahu, K.; Kuriakose, S.; Singh, J.; Satpati, B.; Mohapatra, S. Facile synthesis of ZnO nanoplates and nanoparticle aggregates for highly efficient photocatalytic degradation of organic dyes. J. Phys. Chem. Solids 2018, 121, 186–195. [Google Scholar] [CrossRef]
- Baig, A.B.A.; Rathinam, V.; Ramya, V. Facile fabrication of Zn-doped SnO2 nanoparticles for enhanced photocatalytic dye degradation performance under visible light exposure. Adv. Compos. Hybrid Mater. 2021, 4, 114–126. [Google Scholar] [CrossRef]
- Eom, K.; Yoo, I.H.; Kalanur, S.S.; Seo, H. Photocatalytic degradation characteristics of heterojunction SnO2-CuxO nanopowders of methylene blue under UV light. Korean J. Chem. Eng. 2021, 38, 617–623. [Google Scholar] [CrossRef]
Year | Materials | Synthesis Method | Pollutants (Dye) | Degradation | Reference |
---|---|---|---|---|---|
2022 | ZnO-doped C | Carbonization of zeolitic imidazolate framework-8 | MB | 98% in 250 min | [60] |
2021 | Cellulose nanofibers | Cellulose membranes using an automatic sheet former | MB | 60% in 180 min | [61] |
2021 | ZnO NPs | Green synthesis (Syzygium Cumini) | MB | 91.4% in 180 min | [17] |
2021 | ZnO Nps | Green synthesis (Ziziphus jujuba) | MB | 37% in 45 min | [62] |
2022 | SnO2 NPs | Hydrothermal synthesis | MB | 97% in 120 min | [63] |
2021 | Au-ZnO NPs | Green synthesis (Carya illinoinensis) | RB | 95% in 180 min | [64] |
2022 | ZnO NPs | Green synthesis (Sechium edule polysaccharides) | RB | 95% in 75 min | [65] |
2021 | SnO2 NPs | Green synthesis (Camellia sinensis) | RB | 100% in 180 min | [66] |
2022 | CuO–SiO2 Composite | Sol–gel process | RB | 85% in 300 min | [67] |
2022 | ZnO NPs | Green synthesis (Randia echinocarpa) | MB | 100% in 210 min | This work |
2022 | SnO2 NPs | Green synthesis (Randia echinocarpa) | RB | 100% in 150 min | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinchillas-Chinchillas, M.J.; Garrafa-Gálvez, H.E.; Orozco-Carmona, V.M.; Luque-Morales, P.A. Comparative Study of SnO2 and ZnO Semiconductor Nanoparticles (Synthesized Using Randia echinocarpa) in the Photocatalytic Degradation of Organic Dyes. Symmetry 2022, 14, 1970. https://doi.org/10.3390/sym14101970
Chinchillas-Chinchillas MJ, Garrafa-Gálvez HE, Orozco-Carmona VM, Luque-Morales PA. Comparative Study of SnO2 and ZnO Semiconductor Nanoparticles (Synthesized Using Randia echinocarpa) in the Photocatalytic Degradation of Organic Dyes. Symmetry. 2022; 14(10):1970. https://doi.org/10.3390/sym14101970
Chicago/Turabian StyleChinchillas-Chinchillas, Manuel J., Horacio E. Garrafa-Gálvez, Victor M. Orozco-Carmona, and Priscy A. Luque-Morales. 2022. "Comparative Study of SnO2 and ZnO Semiconductor Nanoparticles (Synthesized Using Randia echinocarpa) in the Photocatalytic Degradation of Organic Dyes" Symmetry 14, no. 10: 1970. https://doi.org/10.3390/sym14101970
APA StyleChinchillas-Chinchillas, M. J., Garrafa-Gálvez, H. E., Orozco-Carmona, V. M., & Luque-Morales, P. A. (2022). Comparative Study of SnO2 and ZnO Semiconductor Nanoparticles (Synthesized Using Randia echinocarpa) in the Photocatalytic Degradation of Organic Dyes. Symmetry, 14(10), 1970. https://doi.org/10.3390/sym14101970