Vortex Flows with Particles and Droplets (A Review)
Abstract
:1. Introduction
2. The Motion of Particles and Droplets in Vortex Flows (Basic Characteristics)
2.1. Concentration of Particles and Droplets. Modes of Interaction
2.2. Reynolds Numbers
2.3. Stokes Numbers
2.4. Froude Numbers
2.5. Tachikawa Number
3. The Motion of Particles and Droplets in Various Vortex Structures
3.1. Particle Motion in a Forced Vortex
3.2. Particle Motion in the Rankine Vortex
3.3. Particle Motion in the Burgers Vortex
3.4. Particle Motion in the Lamb–Oseen Vortex
3.5. Particle Motion in a Flow Induced by Two or More Vortices
3.6. Particle Motion in a Closed Vortex Back-Step Gas Flow
3.7. Particle Motion in a Closed Vortex Gas Flow Induced by Rotating Cylinders
3.8. Motion of Polydisperse Droplets in Vortices
4. Natural Vortex Structures
4.1. Accounting for the Two-Phase Nature of the Tornado
4.2. Particle Motion in a Tornado
4.3. Influence of Particles on Tornado Characteristics
5. Conclusions
- (1)
- study of two-phase vortices in a wide range of changes in the inertia of the dispersed phase (determined primarily by the Stokes number Stkf) and the intensity of vortex structures (determined by the vortex Reynolds number ReΓ);
- (2)
- study of two-phase vortices at moderate and high values of volume concentration, i.e., in the case of the presence of the back influence of the dispersed phase on the carrier gas characteristics (two-way coupling) and the presence of interparticle (or interdroplet) collisions (four-way coupling);
- (3)
- study of the characteristics of monodisperse and polydisperse particles (droplets) in multi-vortex structures as an approximation to a real two-phase turbulent flow, which is of great practical importance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
particle (droplet) diameter, m | |
vortex core diameter, m | |
vortex core radius, m | |
channel radius, m | |
cylinder radius, m | |
characteristic geometric size, m | |
Kolmogorov spatial microscale, m | |
, , | Cartesian coordinates, m |
, | polar coordinates, m, deg |
mass of particle (droplet), mass of debris, kg | |
carrier gas density, kg/m3 | |
particle (droplet) density, kg/m3 | |
gravitational acceleration, m/s2 | |
velocity vector of carrier gas, m/s | |
velocity vector of particles (droplets), m/s | |
carrier gas characteristic velocity, m/s | |
, | projections of carrier gas velocity, m/s |
, , | radial, azimuthal, and axial carrier gas velocity, m/s |
, | projections of particle (droplet) velocity, m/s |
vector of carrier gas angular velocity, s−1 | |
dynamic viscosity of carrier gas, kg/(ms) | |
kinematic viscosity of carrier gas, m2/s | |
time, s | |
dynamic relaxation time of particle (droplet), s | |
dynamic relaxation time of Stokesian particle (droplet), s | |
vortex characteristic time, carrier gas characteristic time, s | |
vortex circulation, m2/s | |
Dimensionless parameters | |
density ratio | |
strain parameter | |
rate of sedimentation | |
aerodynamic drag coefficient | |
mass concentration of particles (droplets) | |
volume concentration of particles (droplets) | |
Reynolds number of particle (droplet) | |
vortex Reynolds number | |
Stokes number | |
Stokes number defined by circulation and strain parameter | |
Froude number | |
Froude number defined by circulation and strain parameter | |
Tachikawa number | |
Indexes | |
nondimensional value | |
Subscripts | |
max | maximum value |
cr | critical value |
f | fluid (carrier gas) |
c | corner flow, core |
debris | |
debris cascade centre mass | |
total value | |
large distance from the core |
References
- Van Dyke, M. An Album of Fluid Motion; Parabolic Press: Stanford, CA, USA, 1982. [Google Scholar]
- Saffman, P.G. Vortex Dynamics; Cambridge University Press: Cambridge, NY, USA, 1992; 311p. [Google Scholar]
- Wu, J.-Z.; Ma, X.-Y.; Zhou, M.-D. Vorticity and Vortex Dynamics; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Soo, S.L. Particulates and Continuum. Multiphase Fluid Dynamics; Hemisphere: Berlin, NY, USA, 1989; 400p. [Google Scholar]
- Fan, L.-S.; Zhu, C. Principles of Gas-Solid Flows; Cambridge University Press: New York, NY, USA, 1998. [Google Scholar]
- Michaelides, E.E.; Crowe, C.T.; Schwarzkopf, J.D. (Eds.) Multiphase Flow Handbook; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Wang, L.; Maxey, M.R. Settling Velocity and Concentration Distribution of Heavy Particles in Homogeneous Isotropic Turbulence. J. Fluid Mech. 1993, 256, 27–68. [Google Scholar] [CrossRef]
- Squires, K.D.; Eaton, J.K. Preferential Concentration of Particles by Turbulence. Phys. Fluids A 1991, 3, 1169–1179. [Google Scholar] [CrossRef]
- Reade, W.C.; Collins, L.R. Effect of Preferential Concentration on Turbulent Collision Rates. Phys. Fluids. 2000, 12, 2530–2540. [Google Scholar] [CrossRef]
- Aliseda, A.; Cartellier, A.; Hainaux, F.; Lasheras, J.C. Effect of Preferential Concentration on the Settling Velocity of Heavy Particles in Homogeneous Isotropic Turbulence. J. Fluid. Mech. 2002, 468, 77–105. [Google Scholar] [CrossRef]
- Elghobashi, S. Particle-Laden Turbulent Flows: Direct Simulation and Closure Models. Appl. Scient. Res. 1991, 48, 301–314. [Google Scholar] [CrossRef]
- Schiller, L.; Naumann, Z. A Drag Coefficient Correlation. Z. Ver. Dtsch. Ing. 1935, 77, 318–320. [Google Scholar]
- Clift, R.; Grace, J.R.; Weber, M.E. Bubbles, Drops and Particles; Academic Press. Inc.: New York, NY, USA, 1978; 558p. [Google Scholar]
- Tachikawa, M. Trajectories of Flat Plates in Uniform Flow with Application to Wind-Generated Missiles. J. Wind Eng. Ind. Aerodyn. 1983, 14, 443–453. [Google Scholar] [CrossRef]
- Varaksin, A.Y.; Protasov, M.V.; Teplitskii, Y.S. About Choice of Particle Parameters for Visualization and Diagnostics of Free Concentrated Air Vortices. High Temp. 2014, 52, 554–559. [Google Scholar] [CrossRef]
- Kriebel, A.R. Particle Trajectories in a Gas Centrifuge. Trans. ASME J. Basic Eng. 1961, 83D, 333339. [Google Scholar] [CrossRef]
- Lamb, H. Hydrodynamics; Cambridge University Press: New York, NY, USA, 1993; 738p. [Google Scholar]
- Roy, A.; Subramanian, G. Linearized Oscillations of a Vortex Column: The Singular Eigenfunctions. J. Fluid Mech. 2014, 741, 404–460. [Google Scholar] [CrossRef]
- Fung, Y.T.; Kurzweg, U.H. Stability of Swirling Flows with Radius-Dependent Density. J. Fluid Mech. 1975, 72, 243–255. [Google Scholar] [CrossRef]
- Sipp, D.; Fabre, D.; Michelin, S.; Jacquin, L. Stability of a Vortex with a Heavy Core. J. Fluid Mech. 2005, 526, 67–76. [Google Scholar] [CrossRef]
- Joly, L.; Fontane, J.; Chassaing, P. The RayleighTaylor Instability of Two-Dimensional High Density Vortices. J. Fluid Mech. 2005, 537, 415–432. [Google Scholar] [CrossRef]
- Magnani, M.; Musacchio, S.; Boffetta, G. Inertial Effects in Dusty RayleighTaylor Turbulence. J. Fluid Mech. 2021, 926, A23. [Google Scholar] [CrossRef]
- Sozza, A.; Cencini, M.; Musacchio, S.; Boffetta, G. Instability of a Dusty Kolmogorov Flow. J. Fluid Mech. 2022, 931, A26. [Google Scholar] [CrossRef]
- Shuai, S.; Dhas, D.J.; Roy, A.; Kasbaoui, M.H. Instability of a Dusty Vortex. arXiv 2022, arXiv:phys.flu-dyn/08322v1. [Google Scholar] [CrossRef]
- Druzhinin, O.A. Concentration Waves and Flow Modification in a Particle-Laden Circular Vortex. Phys. Fluids 1994, 10, 3276–3284. [Google Scholar] [CrossRef]
- Druzhinin, O.A. On the Two-Way Interaction in Two-Dimensional Particle-Laden Flows: The Accumulation of Particles and Flow Modification. J. Fluid Mech. 1995, 297, 49–76. [Google Scholar] [CrossRef]
- Marshall, J.S. Particle Dispersion in a Turbulent Vortex Core. Phys. Fluids 2005, 17, 025104. [Google Scholar] [CrossRef]
- Alekseenko, S.V.; Kuibin, P.A.; Okulov, V.L. Theory of Concentrated Vortices: An Introduction; Springer: Berlin/Heidelberg, Germany, 2007; 494p. [Google Scholar]
- Burger, J.M. Application of a Model System to Illustrate Some Points of the Statistical Theory of Free Turbulence. Proc. Acad. Sci. Amst. 1940, 1, 2–12. [Google Scholar]
- Burger, J.M. A Mathematical Model Illustrating the Theory of Turbulence. Adv. Appl. Mech. 1948, 1, 197–199. [Google Scholar]
- Rott, N. On the Viscous Core of a Line Vortex. Z. Angew. Math. Phys. 1958, 9, 543–553. [Google Scholar] [CrossRef]
- Donaldson, C.P.; Sullivan, R.D. Behaviour of Solutions of the Navier-Stokes Equations for a Complete Class of Free-Dimensional Viscous Vortices. In Proceedings of the Heat Transfer Fluid Mechanics Conference; Stanford University Press: Stanford, CA, USA, 1960; pp. 16–30. [Google Scholar]
- Ashurst, W.T. Is Turbulence a Collection of Burgers Vortices? Phys. Fluids A 1991. preprint. [Google Scholar]
- Maxworthy, T. Storm in a Tea Cup. J. Appl. Mech. 1968, 35, 453. [Google Scholar] [CrossRef]
- Marcu, B.; Meiburg, E.; Newton, P.K. Dynamics of Heavy Particles in a Burgers Vortex. Phys. Fluids 1995, 7, 400410. [Google Scholar] [CrossRef]
- Ruetsch, R.; Maxey, M.R. Small-Scale Features of Vorticity and Passive Scalar Fields in Homogeneous Isotropic Turbulence. Phys. Fluids 1991, 7, 1587–1597. [Google Scholar] [CrossRef]
- Shuai, S.; Kasbaoui, M.H. Accelerated Decay of a Lamb-Oseen Vortrex Tube Laden with Inertial Particles in Eulerian-Lagrangian Simulations. J. Fluid Mech. 2022, 936, A8. [Google Scholar] [CrossRef]
- Angilella, J.-R. Dust Trapping in Vortex Pairs. Physica D 2010, 239, 1789–1797. [Google Scholar] [CrossRef]
- Ravichandran, S.; Perlekar, P.; Govindarajan, R. Attracting Fixed Points for Heavy Particles in the Vicinity of a Vortex Pair. Phys. Fluids 2014, 26, 013303. [Google Scholar] [CrossRef]
- Ravichandran, S.; Govindarajan, R. Caustics and Clustering in the Vicinity of a Vortex. Phys. Fluids 2015, 27, 033305. [Google Scholar] [CrossRef]
- Kazemi, S.; Adib, M.; Amani, E. Numerical Study of Advanced Dispersion Models in Particle-Laden Swirling Flows. Int. J. Multiph. Flow. 2018, 101, 167–185. [Google Scholar] [CrossRef]
- Sommerfeld, M. Validation of a Stochastic Lagrangian Modelling Approach for Inter-Particle Collisions in Homogeneous Isotropic Turbulence. Int. J. Multiph. Flow. 2001, 27, 1829–1858. [Google Scholar] [CrossRef]
- Moissette, S.; Oesterle, B.; Boulet, P. Temperature Fluctuations of Discrete Particles in a Homogeneous Turbulent Flow: A Lagrangian Model. Int. J. Heat Fluid Flow. 2001, 22, 220–226. [Google Scholar] [CrossRef]
- Minier, J.-P.; Peirano, E. The PDF Approach to Turbulent Polydispersed Two-Phase Flows. Phys. Rep. 2001, 352, 1–214. [Google Scholar] [CrossRef]
- Taniere, A.; Arcen, B. Prediction of a Particle-Laden Turbulent Channel Flow: Examination of Two Classes of Stochastic Dispersion Models. Int. J. Multiph. Flow. 2014, 60, 1–10. [Google Scholar] [CrossRef]
- Gosman, A.D.; Ioannides, E. Aspects of Computer Simulation of Liquid-Fueled Combustors. J. Energy 1983, 7, 482–490. [Google Scholar] [CrossRef]
- Sommerfeld, M.; Qiu, H.-H. Characterization of Particle-Laden, Confined Swirling Flows by Phase-Doppler Anemometry and Numerical Calculation. Int. J. Multiph. Flow. 1993, 19, 1093–1127. [Google Scholar] [CrossRef]
- Sommerfeld, M.; Ando, A.; Wennerberg, D. Swirling, Particle-Laden Flows Through a Pipe Expansion. ASME J. Fluids Engng. 1992, 114, 648–656. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, L. Numerical Analysis on Particle Dispersions of Swirling Gas-Particle Flow Using a Four-Way Coupled Large Eddy Simulation. Int. Comm. Heat Mass Transfer. 2022, 133, 105974. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, L. A Novel Particle Subgrid Scale Modeling of Large Eddy Simulation for Swirling Particle-Laden Turbulent Flow. Powder Technol. 2022, 402, 117348. [Google Scholar] [CrossRef]
- Ku, X.; Lin, J.; van Sint Annaland, M.; Hagmeijer, R. Numerical Simulation of the Accumulation of Heavy Particles in a Circular Bounded Vortex Flow. Int. J. Multiph. Flow. 2016, 87, 80–89. [Google Scholar] [CrossRef]
- Gidaspow, D. Multiphase Flow and Fluidization; Academic Press: San Diego, CA, USA, 1994; 467p. [Google Scholar]
- Di Felice, R. The Voidage Function for Fluid-Particle Interaction Systems. Int. J. Multiph. Flow. 1994, 20, 153–159. [Google Scholar] [CrossRef]
- Benyahia, S.; Syamlal, M.; O’Brien, T.J. Extension of Hill-Koch-Ladd Drag Correlation over All Ranges of Reynolds Number and Solids Volume Fraction. Powder Technol. 2006, 162, 166–174. [Google Scholar] [CrossRef]
- Ku, X.; Li, H.; Lin, J.; Jin, H.; Shen, F. Accumulation of Heavy Particles in a Circular Bounded Vortex Flow: Parameter Influence and Comparison. Int. J. Multiph. Flow. 2018, 103, 124–140. [Google Scholar] [CrossRef]
- Ku, X.; Li, H.; Lin, J.; Jin, H. Accumulation of Heavy Particles in a Circular Bounded Vortex Flow Induced by Two Small Rotating Cylinders. Int. J. Multiph. Flow. 2019, 113, 71–88. [Google Scholar] [CrossRef]
- Marble, F. Growth of a Diffusion Flame in the Field of a Vortex. In Recent Advances in the Aerospace Sciences; Springer: Berlin/Heidelberg, Germany, 1985; pp. 395–413. [Google Scholar]
- Alain, M.; Candel, S.M. A Numerical Analysis of a Diffusion Flame-Vortex Interaction. Combust. Sci. Technol. 1988, 60, 79–96. [Google Scholar] [CrossRef]
- Renard, P.-H.; Thevenin, D.; Rolon, J.-C.; Candel, S. Dynamics of Flame/Vortex Interaction. Proc. Energy Combust. Sci. 2000, 26, 225–282. [Google Scholar] [CrossRef]
- Dagan, Y.; Arad, E.; Tambour, Y. On the Dynamics of Spray Flames in Turbulent Flows. Proc. Combust. Inst. 2015, 35, 1657–1665. [Google Scholar] [CrossRef]
- Shinjo, G.; Umemura, A. Droplet/Turbulence Interaction and Early Flame Kernel Development in an Autoigniting Realistic Dense Spray. Proc. Combust. Inst. 2013, 34, 1553–1560. [Google Scholar] [CrossRef]
- Bellan, J.; Harstad, K. The Dynamics of Dense and Dilute Clusters of Drops Evaporating in Large, Coherent Vortices. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1991; Volume 23, pp. 1375–1381. [Google Scholar]
- Sirignano, W.A. Fluid Dynamics and Transport of Droplets and Sprays; Cambridge University Press: Cambridge, UK, 1999; 311p. [Google Scholar]
- Harstad, K.; Bellan, J. Evoluation of Commonly Used Assumptions for Isolated and Cluster Heptane Drops in Nitrogen at All Pressures. Combust. Flame. 2001, 127, 1861–1879. [Google Scholar] [CrossRef]
- Park, T.W.; Aggarwal, S.K.; Katta, V.R. A Numerical Study of Droplet-Vortex Interactions in an Evaporating Spray. Int. J. Heat Mass Transfer. 1996, 39, 2205–2219. [Google Scholar] [CrossRef]
- Burger, M.; Schmehl, R.; Koch, R.; Wittig, S.; Bauer, H.-J. DNS of Droplet-Vortex Interaction with a Karman Vortex Street. Int. J. Heat Fluid Flow. 2006, 27, 181–191. [Google Scholar] [CrossRef]
- Tambour, Y. A Lagrangian Sectional Approach for Simulating Droplet Size Distribution of Vaporizing Fuel Sprays in a Turbulent Jet. Combust. Flame 1985, 60, 15–28. [Google Scholar] [CrossRef]
- Katoshevski, D.; Tambour, Y. A Theoretical Study of Polydisperse Liquid Sprays in a Shear-Layer Flow. Phys. Fluids 1993, 5, 3085–3098. [Google Scholar] [CrossRef]
- Greenberg, J.B. Finite-Rate Evaporation and Droplet Drag Effects in Spherical Flame Front Propagation Through a Liquid Fuel Mist. Combust. Flame 2007, 148, 187–197. [Google Scholar] [CrossRef]
- De Chaisemartin, S. Eulerian Models and Numerical Simulation of Turbulent Dispersion for Polydisperse Evaporation Sprays; Ecole Centrale: Paris, France, 2009. [Google Scholar]
- De Chaisemartin, S.; Freret, L.; Kah, D.; Lauren, F.; Fox, R.; Reveillon, J.; Massot, M. Eulerian Models for Turbulent Spray Combustion with Polydispersity and Droplet Crossing. Comptes Rendus Mec. 2009, 337, 438–448. [Google Scholar] [CrossRef]
- Vie, A.; Doisneau, F.; Massot, M. On the Anisotropic Gaussian Velocity Closure for Inertial-Particle Laden Flows. Commun. Comput. Phys. 2015, 17, 1–46. [Google Scholar] [CrossRef]
- Dagan, Y.; Greenberg, J.B.; Katoshevski, D. Similarity Solutions for the Evolution of Polydisperse Droplets in Vortex Flows. Int. J. Multiph. Flow. 2017, 97, 1–9. [Google Scholar] [CrossRef]
- Varaksin, A.Y.; Romash, M.E.; Kopeitsev, V.N. The Possibilities of Visualization in the Case of Simulation of Air Tornados. High Temp. 2010, 48, 588–592. [Google Scholar] [CrossRef]
- Varaksin, A.Y.; Romash, M.E.; Kopeitsev, V.N.; Taekin, S.I. The Possibility of Physical Simulation of Air Tornados under Laboratory Conditions. High Temp. 2008, 46, 888–891. [Google Scholar] [CrossRef]
- Varaksin, A.Y.; Romash, M.E.; Kopeitsev, V.N.; Gorbachev, M.A. Experimental Study of Wall-Free Non-Stationary Vortices Generation due to Air Unstable Stratification. Int. J. Heat Mass Transfer. 2012, 55, 6567–6572. [Google Scholar] [CrossRef]
- Varaksin, A.Y.; Romash, M.E.; Kopeitsev, V.N.; Gorbachev, M.A. Method of Impact on Free Nonstationary Air Vortices. High Temp. 2012, 50, 496–500. [Google Scholar] [CrossRef]
- Sinkevich, O.A. A Model of Flow in Tornado Vortex in View of Phase Transitions. High Temp. 1996, 34, 922–927. [Google Scholar]
- Sinkevich, O.A.; Chikunov, S.E. Numerical Simulation of Two-Phase Flow in a Tornado Funnel. High Temp. 2002, 40, 604–612. [Google Scholar] [CrossRef]
- Sinkevich, O.A.; Bortsova, A.A. Two-Phase Flows in the Formed Tornado Funnel. J. Phys. Conf. Ser. 2017, 891, 012027. [Google Scholar] [CrossRef]
- Varaksin, A.Y.E.; Zaichik, L.I. The Effect of a Fine Divided Impurity on the Turbulence Intensity of a Carrier Flow in a Pipe. High Temp. 1998, 36, 983–986. [Google Scholar]
- Zaichik, L.I.; Varaksin, A.Y.E. Effect of the Wake behind Large Particles on the Turbulence Intensity of Carrier Flow. High Temp. 1999, 37, 655–658. [Google Scholar]
- Varaksin, A.Y. Effect of Macro-, Micro- and Nanoparticles on Turbulence in a Carrier Gas. Dokl. Phys. 2021, 66, 72–75. [Google Scholar] [CrossRef]
- Varaksin, A.Y. Effect of Particles on Carrier Gas Flow Turbulence. High Temp. 2015, 53, 423–444. [Google Scholar] [CrossRef]
- Fricker, T.; Friesenhahn, C. Tornado Fatalities in Context: 1995-2018. Wea. Clim. Soc. 2021, 14, 81–93. [Google Scholar] [CrossRef]
- Agee, E.; Taylor, L. Historical Analysis of U.S. Tornado Fatalities (1808–2017): Population, Science, and Technology. Wea. Clim. Soc. 2019, 11, 355–368. [Google Scholar] [CrossRef]
- Wakimoto, R.M.; Wienhoff, Z.; Reif, D.; Bluestein, H.B.; Lewellen, D.C. The Dodge City Tornadoes on 24 May 2016: Understanding Cycloidal Marks in Surface Damage Tracks and Further Analysis of the Debris Cloud. Mon. Wea. Rev. 2022, 150, 1233–1246. [Google Scholar] [CrossRef]
- Bodine, D.J.; Maruyama, T.; Palmer, R.D.; Fulton, C.J.; Bluestein, H.B.; Lewellen, D.C. Sensitivity of Tornado Dynamics to Soil Debris Loading. J. Atmos. Sci. 2016, 73, 2783–2801. [Google Scholar] [CrossRef]
- Anderson-Frey, A.K. Tornado Fatalities: An Environmental Perspective. Wea. Forecast. 2019, 34, 1999–2015. [Google Scholar] [CrossRef]
- Zhao, J.; Yan, G.; Han, D. A Review of Approaches to Simulate Windborne Debris Dynamics in Wind Field. J. Wind Eng. Ind. Aerodyn. 2021, 212, 104597. [Google Scholar] [CrossRef]
- Gu, Z.; Zhao, Y.; Li, Y.; Yu, Y.; Feng, X. Numerical Simulation of Dust Lifting within Dust Devils—Simulation of in Intense Vortex. J. Atmos. Sci. 2006, 63, 26302641. [Google Scholar] [CrossRef]
- Lebedeva, N.A.; Osiptsov, A.N. Structure of Inertial-Admixture Accumulation Zones in a Tornado-Like Flow. Fluid Dyn. 2009, 44, 68–79. [Google Scholar] [CrossRef]
- Varaksin, A.Y.; Romash, M.E.; Taekin, S.I.; Kopeitsev, V.N. The generation of free concentrated air vortexes under laboratory conditions. High Temp. 2009, 47, 78–82. [Google Scholar] [CrossRef]
- Varaksin, A.Y.; Romash, M.E.; Kopeitsev, V.N. Tornado; Begell House: New York, NY, USA, 2015; 394p. [Google Scholar]
- Song, K.W.; Wang, L.; Hu, Y.; Liu, Q. Flow symmetry and heat transfer characteristics of winglet vortex generators arranged in common flow up configuration. Symmetry 2020, 12, 247. [Google Scholar] [CrossRef]
- Chashechkin, Y.D. Discrete and Continuous Symmetries of Stratified Flows Past a Sphere. Symmetry 2022, 14, 1278. [Google Scholar] [CrossRef]
- Li, J.; Zhou, B. The symmetry and stability of the flow separation around a sphere at low and moderate reynolds numbers. Symmetry 2021, 13, 2286. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Gong, Z.; Chen, F.; Peng, Q. Physically Based Modeling and Animation of Tornado. J. Zhejiang Univ. Science A 2006, 7, 1099–1106. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Gong, Z.; Peng, Q. Real Time Simulation of a Tornado. Vis. Comput. 2007, 23, 559–567. [Google Scholar] [CrossRef]
- Maruyama, T. Simulation of Flying Debris Using a Numerically Generated Tornado-Like Vortex. J. Wind Eng. Ind. Aerodyn. 2011, 99, 249–256. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, Y.; Wang, Y.; Cao, J.; Hua, X.; Cao, S. Characteristics of Compact Debris Induced by a Tornado Studied Using Large Eddy Simulation. J. Wind Eng. Ind. Aerodyn. 2021, 208, 104422. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, Y.; Yan, B.; Hua, X.; Zhu, Z.; Cao, S. Numerical Study of Compact Debris at Different Stages Using Large Eddy Simulation. J. Wind Eng. Ind. Aerodyn. 2021, 210, 104530. [Google Scholar] [CrossRef]
- Lewellen, D.C.; Gong, B.; Lewellen, W.S. Effect of Finescale Debris on Near-Surface Tornado Dynamics. J. Atmos. Sci. 2008, 65, 3247–3262. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V. Approximate calculation of convective heat transfer near hypersonic aircraft surface. J. Enhanc. Heat Transf. 2018, 25, 181–193. [Google Scholar] [CrossRef]
- Ryzhkov, S.V.; Kuzenov, V.V. Analysis of the ideal gas flow over body of basic geometrical shape. Int. J. Heat Mass Transf. 2019, 132, 587–592. [Google Scholar] [CrossRef]
- Ryzhkov, S.V.; Kuzenov, V.V. New realization method for calculating convective heat transfer near the hypersonic aircraft surface. ZAMP 2019, 70, 46. [Google Scholar] [CrossRef]
- Varaksin, A.Y.; Romash, M.E.; Kopeitsev, V.N. Effect of Net Structures on Wall-Free Non-Stationary Air Heat Vortices. Int. J. Heat Mass Transfer. 2013, 64, 817–828. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varaksin, A.Y.; Ryzhkov, S.V. Vortex Flows with Particles and Droplets (A Review). Symmetry 2022, 14, 2016. https://doi.org/10.3390/sym14102016
Varaksin AY, Ryzhkov SV. Vortex Flows with Particles and Droplets (A Review). Symmetry. 2022; 14(10):2016. https://doi.org/10.3390/sym14102016
Chicago/Turabian StyleVaraksin, Aleksey Yu., and Sergei V. Ryzhkov. 2022. "Vortex Flows with Particles and Droplets (A Review)" Symmetry 14, no. 10: 2016. https://doi.org/10.3390/sym14102016
APA StyleVaraksin, A. Y., & Ryzhkov, S. V. (2022). Vortex Flows with Particles and Droplets (A Review). Symmetry, 14(10), 2016. https://doi.org/10.3390/sym14102016