Topological Quantization of Fractional Quantum Hall Conductivity
Abstract
:1. Introduction
2. Statement of the Main Result
3. Fixed Number of Different Particles
3.1. Derivation of the Expression for Hall Conductance
3.2. Proof of Topological Invariance
4. System with Varying Number of Identical Particles and Fixed Chemical Potential
4.1. Derivation of the Topological Expression
4.2. The Proof of the Statement That (38) Is Equivalent to (41)
4.3. The Case of a Non-Interacting System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Multi Particle States
Appendix A.1. Fermion Creation/Annihilation Operators and One Fermion States
Appendix A.2. Two Fermion States
Appendix A.3. N Fermion States
Appendix A.4. Derived Identities Involving the Projection Operator onto N>1 Particle States
Appendix B. Miscellaneous Identities for Weyl Symbols with N > 1
References
- Klitzing, K.V.; Dorda, G.; Pepper, M. New method for high accuracy determination of the fine structure constant based on quantized Hall resistance. Phys. Rev. Lett. 1980, 45, 494–497. [Google Scholar] [CrossRef] [Green Version]
- Thouless, D.J.; Kohmoto, M.; Nightingale, M.P.; den Nijs, M. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett. 1980, 49, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Tong, D. Lectures on the quantum hall effect. arXiv 1980, arXiv:1606.06687. [Google Scholar]
- Girvin, S.M. The quantum hall effect: Novel excitations and broken symmetries. arXiv 1980, arXiv:c9907002v1. [Google Scholar]
- Goerbig, M.O. Quantum hall effects. arXiv 2009, arXiv:0909.1998v2. [Google Scholar]
- Witten, E. Three lectures on topological phases of matter. Riv. Nuovo Cim. 1980, 39, 313–370. [Google Scholar]
- Nayak, C. Quantum Condensed Matter Physics—Lecture. Cornell 2013. Available online: https:///muellergroup.lassp.cornell.edu/Basic_Training_Spring_2013/Field_Theory_files/nayak_notes.pdf (accessed on 1 May 2022).
- Volovik, G.E. The Universe in a Helium Droplet; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Ishikawa, K.; Matsuyama, T. Magnetic Field Induced Multi Component QED in Three-dimensions and Quantum Hall Effect. Z. Phys. C 1980, 33, 41. [Google Scholar] [CrossRef]
- Volovik, G. The gravitational-topological chern-simons term in a film of superfluid 3 ha. Sov. J. Exp. Theor. Phys. Lett. 1990, 51, 111–114. [Google Scholar]
- Coleman, S.R.; Hill, B.R. No More Corrections to the Topological Mass Term in QED in Three-Dimensions. Phys. Lett. B 1985, 159, 184–188. [Google Scholar] [CrossRef]
- Lee, T. The Absence of Radiative Corrections From Higher Order Loops to Topological Mass in (2+1)-dimensional Electrodynamics. Phys. Lett. B 1986, 171, 247–250. [Google Scholar] [CrossRef]
- Zhang, C.; Zubkov, M. Influence of interactions on Integer Quantum Hall Effect. Ann. Phys. 2022, 444, 169016. [Google Scholar] [CrossRef]
- Zubkov, M.; Wu, X. Topological invariant in terms of the Green functions for the Quantum Hall Effect in the presence of varying magnetic field. Ann. Phys. 2020, 418, 168179, Erratum in Ann. Phys. 2021, 430, 168510. [Google Scholar] [CrossRef] [Green Version]
- Fialkovsky, I.V.; Zubkov, M.A. Elastic Deformations and Wigner–Weyl Formalism in Graphene. Symmetry 2020, 12, 317. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zubkov, M. Hall Conductivity as the Topological Invariant in the Phase Space in the Presence of Interactions and a Nonuniform Magnetic Field. Pis’ma V Zhurnal Èksperimental’noi I Teor. Fiz. 2019, 110, 480–481. [Google Scholar] [CrossRef] [Green Version]
- Suleymanov, M.; Zubkov, M.A. Chiral separation effect in nonhomogeneous systems. Phys. Rev. D 2020, 102, 076019. [Google Scholar] [CrossRef]
- Volovik, G.E. An analog of the quantum Hall effect in a superfluid 3He film. JETP 1988, 94, 123. [Google Scholar]
- Fialkovsky, I.V.; Suleymanov, M.; Wu, X.; Zhang, C.X.; Zubkov, M.A. Hall conductivity as topological invariant in phase space. Phys. Scr. 2020, 95, 064003. [Google Scholar] [CrossRef] [Green Version]
- Suleymanov, M.; Zubkov, M.A. Wigner–Weyl formalism and the propagator of Wilson fermions in the presence of varying external electromagnetic field. Nucl. Phys. B 2019, 938, 171–199, Erratum in Nucl. Phys. B 2019, 946, 114674. [Google Scholar] [CrossRef]
- Kubo, R.; Hasegawa, H.; Hashitsume, N. Quantum Theory of Galvanomagnetic Effect I. Basic Considerations. J. Phys. Soc. Jpn. 1959, 14, 56–74. [Google Scholar] [CrossRef]
- Niu, Q.; Thouless, D.J.; Wu, Y.-S. Quantized hall conductance as a topological invariant. Phys. Rev. B 1985, 31, 3372–3377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altshuler, B.L.; Khmel’Nitzkii, D.; Larkin, A.I.; Lee, P.A. Magnetoresistance and hall effect in a disordered two-dimensional electron gas. Phys. Rev. B 1980, 22, 5142–5153. [Google Scholar] [CrossRef]
- Aronov, A.G.; Altshuler, B.L. Electron-Electron Interactions in Disordered Systems; Modern Problems in Condensed Matter Physics; Elsevier: Amsterdam, The Netherlands, 1985; Volume 10. [Google Scholar]
- Avron, J.E.; Seiler, R.; Simon, B. Homotopy and quantization in condensed matter physics. Phys. Rev. Lett. 1983, 51, 51–53. [Google Scholar] [CrossRef] [Green Version]
- Fradkin, E.H. Field Theories of Condensed Matter Physics; Cambridge University Press: Cambridge, UK, 2013; Volume 82. [Google Scholar]
- Hatsugai, Y. Topological aspects of the quantum hall effect. J. Phys. Condens. Matter 1997, 9, 2507–2549. [Google Scholar] [CrossRef]
- Qi, X.-L.; Hughes, T.; Zhang, S.-C. Topological Field Theory of Time-Reversal Invariant Insulators. Phys. Rev. B 2008, 78, 195424. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, R.M.; Li, D.; Wehefritz-Kaufmann, B. Notes on topological insulators. Rev. Math. Phys. 2016, 28, 1630003. [Google Scholar] [CrossRef] [Green Version]
- Groenewold, H.J. On the Principles of elementary quantum mechanics. Physica 1946, 12, 405–460. [Google Scholar] [CrossRef]
- Moyal, J.E. Quantum mechanics as a statistical theory. Math. Proc. Camb. Philos. Soc. 1949, 45, 99–124. [Google Scholar] [CrossRef]
- Laughlin, R.B. Anomalous quantum Hall effect: An Incompressible quantum fluid with fractionallycharged excitations. Phys. Rev. Lett. 1983, 50, 1395. [Google Scholar] [CrossRef] [Green Version]
- Haldane, F.D.M. Fractional quantization of the Hall effect: A Hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 1983, 51, 605–608. [Google Scholar] [CrossRef]
- Haldane, F.D.M.; Rezayi, E.H. Periodic Laughlin-Jastrow wave functions for the fractional quantized Hall effect. Phys. Rev. B 1985, 31, 2529–2531. [Google Scholar] [CrossRef]
- Bernevig, B.; Haldane, F. Model Fractional Quantum Hall States and Jack Polynomials. Phys. Rev. Lett. 2008, 100, 246802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrei Bernevig, B.; Haldane, F.D.M. Clustering Properties and Model Wave Functions for Non-Abelian Fractional Quantum Hall Quasielectrons. Phys. Rev. Lett. 2009, 102, 066802, Erratum in Phys. Rev. Lett. 2009, 103, 019902. [Google Scholar] [CrossRef] [Green Version]
- Haldane, F.D.M. ‘Fractional statistics’ in arbitrary dimensions: A Generalization of the Pauli principle. Phys. Rev. Lett. 1991, 67, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-S. Statistical distribution for generalized ideal gas of fractional statistics particles. Phys. Rev. Lett. 1994, 73, 922. [Google Scholar] [CrossRef] [PubMed]
- Seidel, A.; Lee, D.H. Abelian and Non-Abelian Hall Liquids and Charge-Density Wave: Quantum Number Fractionalization in One and Two Dimensions. Phys. Rev. Lett. 2006, 97, 056804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergholtz, E.J.; Karlhede, A. Quantum hall system in tao-thouless limit. Phys. Rev. B 2008, 77, 155308. [Google Scholar] [CrossRef]
- Barkeshli, M.; Qi, X.-L. Topological Nematic States and Non-Abelian Lattice Dislocations. Phys. Rev. X 2012, 2, 031013. [Google Scholar] [CrossRef] [Green Version]
- Barkeshli, M.; Jian, C.-M.; Qi, X.-L. Theory of defects in Abelian topological states. Phys. Rev. B 2013, 88, 235103. [Google Scholar] [CrossRef] [Green Version]
- Barkeshli, M.; Jian, C.-M.; Qi, X.-L. Classification of Topological Defects in Abelian Topological States. Phys. Rev. B 2013, 88, 241103. [Google Scholar] [CrossRef] [Green Version]
- Claassen, M.; Lee, C.H.; Thomale, R.; Qi, X.-L.; Devereaux, T.P. Position-Momentum Duality and Fractional Quantum Hall Effect in Chern Insulators. Phys. Rev. Lett. 2015, 114, 236802. [Google Scholar] [CrossRef] [Green Version]
- He, A.-L.; Luo, W.-W.; Wang, Y.-F.; Gong, C.-D. Wave functions for fractional chern insulators in disk geometry. New J. Phys. 2015, 17, 12. [Google Scholar] [CrossRef]
- Jain, J.K. Composite fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 1989, 63, 199–202. [Google Scholar] [CrossRef]
- Jain, J.K. Theory of the fractional quantum Hall effect. Phys. Rev. B 1990, 41, 7653–7665. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The Principles of Quantum Mechanics, 4th ed.; Oxford Science Publications: Oxford, UK, 1967; pp. 225, 248–259. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, J.; Zubkov, M.A. Topological Quantization of Fractional Quantum Hall Conductivity. Symmetry 2022, 14, 2095. https://doi.org/10.3390/sym14102095
Miller J, Zubkov MA. Topological Quantization of Fractional Quantum Hall Conductivity. Symmetry. 2022; 14(10):2095. https://doi.org/10.3390/sym14102095
Chicago/Turabian StyleMiller, J., and M. A. Zubkov. 2022. "Topological Quantization of Fractional Quantum Hall Conductivity" Symmetry 14, no. 10: 2095. https://doi.org/10.3390/sym14102095
APA StyleMiller, J., & Zubkov, M. A. (2022). Topological Quantization of Fractional Quantum Hall Conductivity. Symmetry, 14(10), 2095. https://doi.org/10.3390/sym14102095