Confidence Intervals for Common Coefficient of Variation of Several Birnbaum–Saunders Distributions
Abstract
:1. Introduction
2. Methods
2.1. The GCI Approach
Algorithm 1: GCI approach |
2.2. The MOVER Approach
Algorithm 2: MOVER approach |
|
2.3. The LS Approach
Algorithm 3: LS approach |
|
2.4. The BayCrI Approach
Algorithm 4: BayCrI approach |
|
2.5. The HPDI Approach
3. Simulation Study and Results
4. Application of the Confidence Interval Methods with Real Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vassilopoulos, A.P. Fatigue life modeling and prediction methods for composite materials and structures—Past, present, and future prospects. In Fatigue Life Prediction of Composites and Composite Structures; Vassilopoulos, A.P., Ed.; Woodhead Publishing: Sawston, UK, 2020; pp. 1–43. [Google Scholar]
- Birnbaum, Z.W.; Saunders, S.C. A new family of life distributions. J. Appl. Probab. 1969, 6, 319–327. [Google Scholar] [CrossRef]
- Jin, X.; Kawczak, J. Birnbaum–Saunders and lognormal kernel estimators for modelling durations in high frequency financial data. Ann. Econ. Financ. 2003, 4, 103–124. [Google Scholar]
- Leao, J.; Leiva, V.; Saulo, H.; Tomazella, V. Birnbaum–Saunders frailty regression models: Diagnostics and application to medical data. Biom. J. 2017, 59, 291–314. [Google Scholar] [CrossRef]
- Lio, Y.L.; Tsai, T.R.; Wu, S.J. Acceptance sampling plans from truncated life tests based on the Birnbaum–Saunders distribution for percentiles. Commun. Stat. Simul. Comput. 2010, 39, 119–136. [Google Scholar] [CrossRef]
- Saulo, H.; Leiva, V.; Ziegelmann, F.A.; Marchant, C. A nonparametric method for estimating asymmetric densities based on skewed Birnbaum–Saunders distributions applied to environmental data. Stoch. Environ. Res. Risk. Assess. 2013, 27, 1479–1491. [Google Scholar] [CrossRef]
- Rice, J.A. Mathematical Statistics and Data Analysis; Duxbury Press: Belmont, CA, USA, 2006. [Google Scholar]
- Tian, L. Inferences on the common coefficient of variation. Stat. Med. 2005, 24, 2213–2220. [Google Scholar] [CrossRef]
- Verrill, S.; Johnson, R.A. Confidence bounds and hypothesis tests for normal distribution coefficients of variation. Commun. Statist. Theor. Meth. 2007, 36, 2187–2206. [Google Scholar] [CrossRef]
- Behboodian, J.; Jafari, A.A. Generalized confidence interval for the common coefficient of variation. J. Stat. Theory Appl. 2008, 7, 349–363. [Google Scholar]
- Ng, C.K. Inference on the common coefficient of variation when populations are lognormal: A simulation-based approach. J. Stat. Adv. Theory Appl. 2014, 11, 117–134. [Google Scholar]
- Thangjai, W.; Niwitpong, S.A. Confidence intervals for the weighted coefficients of variation of two-parameter exponential distributions. Cogent Math. 2017, 4, 1315880. [Google Scholar] [CrossRef]
- Liu, X.; Xu, X. A note on combined inference on the common coefficient of variation using confidence distributions. Electron. J. Stat. 2015, 9, 219–233. [Google Scholar] [CrossRef]
- Yosboonruang, N.; Niwitpong, S.A.; Niwitpong, S. Bayesian computation for the common coefficient of variation of delta-lognormal distributions with application to common rainfall dispersion in Thailand. PeerJ 2022, 10, e12858. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, Z.W.; Saunders, S.C. Estimation for a family of life distributions with applications to fatigue. J. Appl. Probab. 1969, 6, 328–347. [Google Scholar] [CrossRef]
- Engelhardt, M.; Bain, L.J.; Wright, F.T. Inference on the parameters of the Birnbaum–Saunders fatigue life distribution based on maximum likelihood estimation. Technometrics 1981, 23, 251–255. [Google Scholar] [CrossRef]
- Ng, H.K.T.; Kundu, D.; Balakrishnan, N. Modified moment estimation for the two-parameter Birnbaum–Saunders distribution. Comput. Stat. Data Anal. 2003, 43, 283–298. [Google Scholar] [CrossRef]
- Wu, J.; Wong, A.C.M. Improved interval estimation for the two-parameter Birnbaum-Saunders distribution. Comput. Stat. Data Anal. 2004, 47, 809–821. [Google Scholar] [CrossRef]
- Xu, A.; Tang, Y. Reference analysis for Birnbaum-Saunders distribution. Comput. Stat. Data Anal. 2010, 54, 185–192. [Google Scholar] [CrossRef]
- Wang, B.X. Generalized interval estimation for the Birnbaum-Saunders distribution. Comput. Stat. Data Anal. 2012, 56, 4320–4326. [Google Scholar] [CrossRef]
- Wang, M.; Sun, X.; Park, C. Bayesian analysis of Birnbaum-Saunders distribution via the generalized ratio-of-uniforms method. Comput. Stat. 2016, 31, 207–225. [Google Scholar] [CrossRef]
- Guo, X.; Wu, H.; Li, G.; Li, Q. Inference for the common mean of several Birnbaum–Saunders populations. J. Appl. Stat. 2017, 44, 941–954. [Google Scholar] [CrossRef]
- Puggard, W.; Niwitpong, S.A.; Niwitpong, S. Bayesian estimation for the coefficients of variation of Birnbaum–Saunders distributions. Symmetry 2021, 13, 2130. [Google Scholar] [CrossRef]
- Puggard, W.; Niwitpong, S.A.; Niwitpong, S. Confidence intervals for comparing the variances of two independent Birnbaum–Saunders distributions. Symmetry 2022, 14, 1492. [Google Scholar] [CrossRef]
- Weerahandi, S. Generalized confidence intervals. J. Am. Stat. Assoc. 1993, 88, 899–905. [Google Scholar] [CrossRef]
- Weerahandi, S. Generalized Inference in Repeated Measures: Exact Methods in MANOVA and Mixed Models; Wiley: Boston, NY, USA, 2004. [Google Scholar]
- Chen, P.; Ye, Z.-S. Estimation of field reliability based on aggregate lifetime data. Technometrics 2017, 59, 115–125. [Google Scholar] [CrossRef]
- Chen, P.; Ye, Z.-S. Approximate statistical limits for a gamma distribution. J. Qaul. Tech. 2017, 49, 64–77. [Google Scholar] [CrossRef]
- Chen, P.; Ye, Z.-S. Uncertainty quantification for monotone stochastic degradation models. J. Qaul. Tech. 2018, 50, 207–219. [Google Scholar] [CrossRef]
- Luo, C.; Shen, L.; Xu, A. Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints. Rel. Eng. Sys. Safe. 2022, 218, 108136. [Google Scholar] [CrossRef]
- Sun, Z.L. The confidence intervals for the scale parameter of the Birnbaum–Saunders fatigue life distribution. Acta Armamentarii 2009, 30, 1558–1561. [Google Scholar]
- Zou, G.Y.; Donner, A. Construction of confidence limits about effect measures: A general approach. Stat. Med. 2008, 27, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.Y.; Taleban, J.; Hao, C.Y. Confidence interval estimation for lognormal data with application to health economics. Comput. Stat. Data Anal. 2009, 53, 3755–3764. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Oral, E. Standardized likelihood ratio test for comparing several log-normal means and confidence interval for the common mean. Stat. Methods Med. Res. 2015, 26, 2919–2937. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Tang, Y. Bayesian analysis of Birnbaum–Saunders distribution with partial information. Comput. Stat. Data Anal. 2011, 55, 2324–2333. [Google Scholar] [CrossRef]
- Wakefield, J.C.; Gelfand, A.E.; Smith, A.F.M. Efficient generation of random variates via the ratio-of-uniforms method. Stat. Comput. 1991, 1, 129–133. [Google Scholar] [CrossRef]
- Box, G.E.P.; Tiao, G.C. Bayesian Inference in Statistical Analysis; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Reports on Smog Situation in the North Home Page. Available online: http://www.pcd.go.th/ (accessed on 25 July 2022). (In Thai)
Scenarios | ||
---|---|---|
1–6 | , , , , (1.0, 1.5, 2.0), | |
7–12 | , , , , (1.0, 1.5, 2.0), | |
13–18 | , , , , (1.0, 1.5, 2.0), | |
19–24 | , , , , (1.0, 1.5, 2.0), | |
25–30 | , , , , (1.0, 1.5, 2.0), | |
31–36 | , , , (0.5, , ), (, ), (1.0, 1.5, | |
37–42 | , , , (0.5, , ), (, ), (1.0, 1.5, | |
43–48 | , , , (0.5, , ), (, ), (1.0, 1.5, | |
49–54 | , , , (0.5, , ), (, ), (1.0, 1.5, | |
55–60 | , , , (0.5, , ), (, ), (1.0, 1.5, | |
61–66 | () | (, (, ( , (, , (, ), ( |
67–72 | () | (, (, ( , (, , (, ), ( |
73–78 | () | (, (, ( , (, , (, ), ( |
79–84 | () | (, (, ( , (, (, ), ( |
Scenarios | Coverage Probability | Average Length | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
GCI | MOVER | LS | BayCrI | HPDI | GCI | MOVER | LS | BayCrI | HPDI | |
1 | 0.931 | 0.936 | 0.851 | 0.922 | 0.912 | 0.1598 | 0.1588 | 0.1447 | 0.1590 | 0.1566 |
2 | 0.956 | 0.848 | 0.799 | 0.953 | 0.948 | 0.2887 | 0.2105 | 0.1948 | 0.2873 | 0.2835 |
3 | 0.948 | 0.942 | 0.878 | 0.949 | 0.943 | 0.2817 | 0.2657 | 0.2516 | 0.2795 | 0.2761 |
4 | 0.957 | 0.816 | 0.727 | 0.951 | 0.946 | 0.4024 | 0.2583 | 0.2478 | 0.3902 | 0.3844 |
5 | 0.961 | 0.872 | 0.812 | 0.958 | 0.955 | 0.3815 | 0.2615 | 0.2535 | 0.3703 | 0.3661 |
6 | 0.947 | 0.910 | 0.879 | 0.945 | 0.950 | 0.3090 | 0.2540 | 0.2501 | 0.2986 | 0.2957 |
7 | 0.936 | 0.935 | 0.877 | 0.933 | 0.922 | 0.1429 | 0.1420 | 0.1314 | 0.1424 | 0.1404 |
8 | 0.949 | 0.826 | 0.774 | 0.947 | 0.942 | 0.2788 | 0.1976 | 0.1843 | 0.2775 | 0.2743 |
9 | 0.952 | 0.944 | 0.887 | 0.951 | 0.943 | 0.2510 | 0.2394 | 0.2291 | 0.2488 | 0.2461 |
10 | 0.952 | 0.837 | 0.781 | 0.954 | 0.950 | 0.3468 | 0.2308 | 0.2229 | 0.3416 | 0.3381 |
11 | 0.946 | 0.840 | 0.806 | 0.947 | 0.943 | 0.3222 | 0.2328 | 0.2270 | 0.3165 | 0.3138 |
12 | 0.953 | 0.925 | 0.896 | 0.950 | 0.948 | 0.2670 | 0.2270 | 0.2242 | 0.2602 | 0.2579 |
13 | 0.950 | 0.951 | 0.897 | 0.949 | 0.944 | 0.1209 | 0.1206 | 0.1142 | 0.1205 | 0.1191 |
14 | 0.953 | 0.837 | 0.789 | 0.952 | 0.943 | 0.2237 | 0.1597 | 0.1527 | 0.2231 | 0.2207 |
15 | 0.946 | 0.945 | 0.907 | 0.946 | 0.939 | 0.2109 | 0.2038 | 0.1975 | 0.2094 | 0.2073 |
16 | 0.941 | 0.834 | 0.783 | 0.940 | 0.936 | 0.2980 | 0.1981 | 0.1935 | 0.2925 | 0.2889 |
17 | 0.949 | 0.843 | 0.806 | 0.950 | 0.943 | 0.2800 | 0.2008 | 0.1974 | 0.2758 | 0.2733 |
18 | 0.937 | 0.906 | 0.894 | 0.937 | 0.932 | 0.2254 | 0.1948 | 0.1932 | 0.2214 | 0.2195 |
19 | 0.926 | 0.930 | 0.889 | 0.924 | 0.918 | 0.1042 | 0.1037 | 0.0995 | 0.1037 | 0.1025 |
20 | 0.948 | 0.827 | 0.795 | 0.950 | 0.952 | 0.2101 | 0.1460 | 0.1404 | 0.2091 | 0.2072 |
21 | 0.951 | 0.942 | 0.925 | 0.946 | 0.941 | 0.1805 | 0.1760 | 0.1720 | 0.1793 | 0.1776 |
22 | 0.952 | 0.815 | 0.765 | 0.948 | 0.946 | 0.2483 | 0.1685 | 0.1655 | 0.2463 | 0.2441 |
23 | 0.946 | 0.855 | 0.814 | 0.944 | 0.942 | 0.2286 | 0.1702 | 0.1680 | 0.2263 | 0.2244 |
24 | 0.940 | 0.917 | 0.903 | 0.941 | 0.937 | 0.1854 | 0.1661 | 0.1652 | 0.1832 | 0.1817 |
25 | 0.940 | 0.943 | 0.909 | 0.936 | 0.926 | 0.0840 | 0.0837 | 0.0816 | 0.0838 | 0.0828 |
26 | 0.948 | 0.834 | 0.807 | 0.949 | 0.946 | 0.1581 | 0.1117 | 0.1093 | 0.1572 | 0.1558 |
27 | 0.959 | 0.959 | 0.933 | 0.957 | 0.954 | 0.1455 | 0.1432 | 0.1411 | 0.1446 | 0.1433 |
28 | 0.946 | 0.824 | 0.812 | 0.953 | 0.943 | 0.2036 | 0.1389 | 0.1374 | 0.2018 | 0.1999 |
29 | 0.951 | 0.847 | 0.837 | 0.950 | 0.946 | 0.1919 | 0.1410 | 0.1398 | 0.1897 | 0.1881 |
30 | 0.954 | 0.932 | 0.924 | 0.948 | 0.948 | 0.1519 | 0.1368 | 0.1363 | 0.1504 | 0.1491 |
Scenarios | Coverage Probability | Average Length | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
GCI | MOVER | LS | BayCrI | HPDI | GCI | MOVER | LS | BayCrI | HPDI | |
31 | 0.953 | 0.706 | 0.612 | 0.948 | 0.942 | 0.2375 | 0.1225 | 0.1147 | 0.2334 | 0.2293 |
32 | 0.945 | 0.750 | 0.664 | 0.943 | 0.932 | 0.2365 | 0.1417 | 0.1325 | 0.2347 | 0.2323 |
33 | 0.944 | 0.749 | 0.684 | 0.947 | 0.948 | 0.2569 | 0.1560 | 0.1475 | 0.2550 | 0.2526 |
34 | 0.959 | 0.631 | 0.590 | 0.957 | 0.950 | 0.3481 | 0.1498 | 0.1427 | 0.3431 | 0.3399 |
35 | 0.954 | 0.900 | 0.840 | 0.951 | 0.948 | 0.2165 | 0.1767 | 0.1711 | 0.2143 | 0.2124 |
36 | 0.958 | 0.891 | 0.858 | 0.960 | 0.963 | 0.2198 | 0.1629 | 0.1602 | 0.2159 | 0.2140 |
37 | 0.959 | 0.609 | 0.544 | 0.953 | 0.943 | 0.2511 | 0.1147 | 0.1080 | 0.2483 | 0.2453 |
38 | 0.931 | 0.717 | 0.634 | 0.927 | 0.924 | 0.2376 | 0.1327 | 0.1248 | 0.2367 | 0.2346 |
39 | 0.953 | 0.726 | 0.686 | 0.952 | 0.945 | 0.2477 | 0.1438 | 0.1368 | 0.2460 | 0.2441 |
40 | 0.945 | 0.568 | 0.529 | 0.949 | 0.938 | 0.3138 | 0.1361 | 0.1304 | 0.3109 | 0.3084 |
41 | 0.947 | 0.879 | 0.828 | 0.950 | 0.947 | 0.1926 | 0.1594 | 0.1551 | 0.1910 | 0.1893 |
42 | 0.954 | 0.897 | 0.858 | 0.954 | 0.951 | 0.1874 | 0.1455 | 0.1435 | 0.1846 | 0.1830 |
43 | 0.949 | 0.632 | 0.580 | 0.948 | 0.931 | 0.2153 | 0.1029 | 0.0980 | 0.2137 | 0.2111 |
44 | 0.961 | 0.748 | 0.704 | 0.963 | 0.955 | 0.1998 | 0.1157 | 0.1104 | 0.1989 | 0.1970 |
45 | 0.949 | 0.747 | 0.688 | 0.942 | 0.938 | 0.2118 | 0.1292 | 0.1240 | 0.2105 | 0.2086 |
46 | 0.945 | 0.591 | 0.556 | 0.946 | 0.941 | 0.2746 | 0.1221 | 0.1178 | 0.2726 | 0.2703 |
47 | 0.941 | 0.891 | 0.851 | 0.943 | 0.941 | 0.1679 | 0.1413 | 0.1384 | 0.1668 | 0.1654 |
48 | 0.956 | 0.888 | 0.868 | 0.956 | 0.960 | 0.1605 | 0.1291 | 0.1277 | 0.1586 | 0.1573 |
49 | 0.941 | 0.741 | 0.678 | 0.939 | 0.937 | 0.1964 | 0.1079 | 0.1028 | 0.1931 | 0.1897 |
50 | 0.942 | 0.787 | 0.722 | 0.940 | 0.932 | 0.1870 | 0.1201 | 0.1148 | 0.1860 | 0.1839 |
51 | 0.958 | 0.787 | 0.740 | 0.951 | 0.946 | 0.2218 | 0.1357 | 0.1304 | 0.2201 | 0.2181 |
52 | 0.953 | 0.634 | 0.599 | 0.958 | 0.952 | 0.3062 | 0.1313 | 0.1268 | 0.3014 | 0.2982 |
53 | 0.939 | 0.878 | 0.831 | 0.937 | 0.934 | 0.1930 | 0.1608 | 0.1568 | 0.1911 | 0.1893 |
54 | 0.942 | 0.839 | 0.806 | 0.947 | 0.948 | 0.2112 | 0.1509 | 0.1490 | 0.2073 | 0.2054 |
55 | 0.958 | 0.690 | 0.651 | 0.954 | 0.952 | 0.1704 | 0.0881 | 0.0852 | 0.1687 | 0.1666 |
56 | 0.961 | 0.744 | 0.682 | 0.957 | 0.952 | 0.1746 | 0.1036 | 0.1000 | 0.1740 | 0.1725 |
57 | 0.948 | 0.765 | 0.728 | 0.946 | 0.939 | 0.1850 | 0.1133 | 0.1101 | 0.1841 | 0.1826 |
58 | 0.950 | 0.597 | 0.573 | 0.950 | 0.949 | 0.2480 | 0.1079 | 0.1052 | 0.2464 | 0.2445 |
59 | 0.944 | 0.897 | 0.866 | 0.950 | 0.945 | 0.1502 | 0.1273 | 0.1252 | 0.1496 | 0.1483 |
60 | 0.951 | 0.876 | 0.849 | 0.952 | 0.944 | 0.1470 | 0.1168 | 0.1159 | 0.1456 | 0.1444 |
Scenarios | Coverage Probability | Average Length | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
GCI | MOVER | LS | BayCrI | HPDI | GCI | MOVER | LS | BayCrI | HPDI | |
61 | 0.921 | 0.736 | 0.634 | 0.921 | 0.910 | 0.1594 | 0.1060 | 0.0992 | 0.1587 | 0.1573 |
62 | 0.932 | 0.654 | 0.546 | 0.925 | 0.923 | 0.1975 | 0.1071 | 0.1004 | 0.1954 | 0.1938 |
63 | 0.945 | 0.534 | 0.456 | 0.936 | 0.930 | 0.2508 | 0.1056 | 0.0994 | 0.2471 | 0.2448 |
64 | 0.951 | 0.774 | 0.695 | 0.948 | 0.943 | 0.1839 | 0.1229 | 0.1197 | 0.1800 | 0.1783 |
65 | 0.958 | 0.822 | 0.753 | 0.955 | 0.958 | 0.1773 | 0.1213 | 0.1186 | 0.1736 | 0.1721 |
66 | 0.937 | 0.840 | 0.781 | 0.944 | 0.948 | 0.1679 | 0.1185 | 0.1164 | 0.1637 | 0.1622 |
67 | 0.944 | 0.747 | 0.617 | 0.938 | 0.934 | 0.1481 | 0.0976 | 0.0920 | 0.1470 | 0.1459 |
68 | 0.933 | 0.623 | 0.534 | 0.931 | 0.923 | 0.1908 | 0.0993 | 0.0937 | 0.1899 | 0.1882 |
69 | 0.945 | 0.516 | 0.454 | 0.942 | 0.937 | 0.2369 | 0.0959 | 0.0909 | 0.2348 | 0.2328 |
70 | 0.951 | 0.812 | 0.760 | 0.952 | 0.947 | 0.1537 | 0.1081 | 0.1058 | 0.1519 | 0.1506 |
71 | 0.953 | 0.843 | 0.787 | 0.957 | 0.955 | 0.1482 | 0.1068 | 0.1049 | 0.1460 | 0.1447 |
72 | 0.955 | 0.870 | 0.824 | 0.960 | 0.958 | 0.1411 | 0.1049 | 0.1034 | 0.1379 | 0.1367 |
73 | 0.919 | 0.736 | 0.648 | 0.920 | 0.916 | 0.1383 | 0.0913 | 0.0867 | 0.1374 | 0.1363 |
74 | 0.931 | 0.631 | 0.539 | 0.929 | 0.923 | 0.1785 | 0.0933 | 0.0886 | 0.1777 | 0.1762 |
75 | 0.955 | 0.582 | 0.499 | 0.954 | 0.944 | 0.2147 | 0.0906 | 0.0864 | 0.2133 | 0.2115 |
76 | 0.956 | 0.828 | 0.788 | 0.957 | 0.955 | 0.1381 | 0.0992 | 0.0975 | 0.1368 | 0.1356 |
77 | 0.953 | 0.820 | 0.774 | 0.948 | 0.945 | 0.1324 | 0.0985 | 0.0970 | 0.1308 | 0.1297 |
78 | 0.941 | 0.874 | 0.840 | 0.940 | 0.937 | 0.1242 | 0.0964 | 0.0953 | 0.1224 | 0.1214 |
79 | 0.940 | 0.751 | 0.689 | 0.938 | 0.937 | 0.1190 | 0.0797 | 0.0767 | 0.1185 | 0.1174 |
80 | 0.956 | 0.652 | 0.585 | 0.956 | 0.952 | 0.1494 | 0.0807 | 0.0778 | 0.1489 | 0.1476 |
81 | 0.941 | 0.557 | 0.515 | 0.937 | 0.934 | 0.1857 | 0.0791 | 0.0766 | 0.1843 | 0.1827 |
82 | 0.949 | 0.835 | 0.786 | 0.947 | 0.949 | 0.1288 | 0.0916 | 0.0903 | 0.1275 | 0.1265 |
83 | 0.944 | 0.811 | 0.788 | 0.942 | 0.937 | 0.1233 | 0.0902 | 0.0891 | 0.1221 | 0.1210 |
84 | 0.954 | 0.868 | 0.836 | 0.958 | 0.960 | 0.1170 | 0.0888 | 0.0879 | 0.1155 | 0.1145 |
Distributions | Lognormal | BS | Exponential | Gamma | Weibull |
---|---|---|---|---|---|
Chang Phueak | 334.4613 | 333.9956 | 366.2775 | 335.8974 | 339.0671 |
Si Phum | 326.8568 | 326.2713 | 351.1782 | 328.6437 | 331.6056 |
Changkerng | 301.5002 | 301.1981 | 337.6783 | 303.2755 | 307.9442 |
Distributions | Lognormal | BS | Exponential | Gamma | Weibull |
---|---|---|---|---|---|
Chang Phueak | 337.3293 | 336.8636 | 367.7115 | 338.7653 | 341.9351 |
Si Phum | 329.7248 | 329.1392 | 352.6122 | 331.5116 | 334.4735 |
Changkerng | 304.3682 | 304.1661 | 339.1123 | 306.1435 | 310.8121 |
Area | n | Min. | Median | Mean | Max. | Variance | CV |
---|---|---|---|---|---|---|---|
Chang Phueak | 31 | 61 | 122 | 131.0323 | 282 | 3310.556 | 0.4391 |
Si Phum | 31 | 42 | 85 | 102.7097 | 248 | 2798.680 | 0.5151 |
Changkerng | 31 | 43 | 81 | 82.6129 | 182 | 1191.045 | 0.4177 |
Methods | Interval | Length |
---|---|---|
GCI | 0.3788–0.5163 | 0.1375 |
MOVER | 0.3860–0.5212 | 0.1352 |
LS | 0.3698–0.4972 | 0.1274 |
BayCrI | 0.3796–0.5160 | 0.1364 |
HPDI | 0.3727–0.5059 | 0.1332 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puggard, W.; Niwitpong, S.-A.; Niwitpong, S. Confidence Intervals for Common Coefficient of Variation of Several Birnbaum–Saunders Distributions. Symmetry 2022, 14, 2101. https://doi.org/10.3390/sym14102101
Puggard W, Niwitpong S-A, Niwitpong S. Confidence Intervals for Common Coefficient of Variation of Several Birnbaum–Saunders Distributions. Symmetry. 2022; 14(10):2101. https://doi.org/10.3390/sym14102101
Chicago/Turabian StylePuggard, Wisunee, Sa-Aat Niwitpong, and Suparat Niwitpong. 2022. "Confidence Intervals for Common Coefficient of Variation of Several Birnbaum–Saunders Distributions" Symmetry 14, no. 10: 2101. https://doi.org/10.3390/sym14102101
APA StylePuggard, W., Niwitpong, S. -A., & Niwitpong, S. (2022). Confidence Intervals for Common Coefficient of Variation of Several Birnbaum–Saunders Distributions. Symmetry, 14(10), 2101. https://doi.org/10.3390/sym14102101