Comparing Instrument Spectral Sensitivity of Dissimilar Electromagnetic Haloscopes to Axion Dark Matter and High Frequency Gravitational Waves
Abstract
:1. Introduction
2. Spectral Sensitivity of a Photonic Axion Haloscope
Consideration of the Signal
3. Comparison of Resonant Cavity Haloscopes
4. Comparison of Broadband Reactive Haloscopes
4.1. ABRACADABRA
4.2. SHAFT
5. Axion Detectors in the 1–500 MHz Band
5.1. Resonant Upconversion Haloscopes
5.1.1. Dual-Mode Power Observable
5.1.2. Dual-Mode Frequency Observable
5.1.3. Single-Mode Anyon Haloscope
6. Axion Haloscope Sensitivity to Gravitational Waves
7. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GW | Gravitational Waves |
HFGW | High Frequency Gravitational Waves |
ADMX | Axion Dark Matter eXperiment |
ORGAN | Oscillating Resonant Group AxioN experiment |
ABRACADABRA | ABRA | A Broadband/Resonant Approach to Cosmic Axion Detection with an |
Amplifying B-field Ring Apparatus | |
SHAFT | Search for Halo Axions with Ferromagnetic Toroid |
SLIC | Superconducting LC Circuit Investigating Cold Axions |
UPLOAD | UPconversion Low-noise Oscillator Axion Detector |
DFSZ | Dine-Fischler-Srednicki-Zhitnitski |
LIGO | Laser Interferometer Gravitational wave Observatory |
MAGE | Multi-mode Acoustic Gravitational wave Experiment |
References
- LIGO Scientific Collaboration and Virgo Collaboration. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LIGO Scientific Collaboration and Virgo Collaboration. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Phys. Rev. Lett. 2016, 116, 131103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, D.; Areeda, J.S.; Berger, B.K.; Bruntz, R.; Effler, A.; Essick, R.C.; Fisher, R.P.; Godwin, P.; Goetz, E.; Helmling-Cornell, A.F.; et al. LIGO detector characterization in the second and third observing runs. Class. Quantum Gravity 2021, 38, 135014. [Google Scholar] [CrossRef]
- Cruise, A.M. The potential for very high-frequency gravitational wave detection. Class. Quantum Gravity 2012, 29, 095003. [Google Scholar] [CrossRef]
- Ejlli, A.; Ejlli, D.; Cruise, A.M.; Pisano, G.; Grote, H. Upper limits on the amplitude of ultra-high-frequency gravitational waves from graviton to photon conversion. Eur. Phys. J. 2019, 79, 1032. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Ikeda, T.; Miuchi, K.; Soda, J. Probing GHz gravitational waves with graviton–magnon resonance. Eur. Phys. J. 2020, 80, 179. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, N.; Aguiar, O.D.; Bauswein, A.; Cella, G.; Clesse, S.; Cruise, A.M.; Domcke, V.; Figueroa, D.G.; Geraci, A.; Goryachev, M.; et al. Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies. Living Rev. Relativ. 2021, 24, 4. [Google Scholar] [CrossRef]
- Goryachev, M.; Tobar, M.E. Gravitational wave detection with high frequency phonon trapping acoustic cavities. Phys. Rev. D 2014, 90, 102005. [Google Scholar] [CrossRef] [Green Version]
- Goryachev, M.; Campbell, W.M.; Heng, I.S.; Galliou, S.; Ivanov, E.N.; Tobar, M.E. Rare Events Detected with a Bulk Acoustic Wave High Frequency Gravitational Wave Antenna. Phys. Rev. Lett. 2021, 127, 071102. [Google Scholar] [CrossRef]
- Chou, A.S.; Gustafson, R.; Hogan, C.; Kamai, B.; Kwon, O.; Lanza, R.; Larson, S.L.; McCuller, L.; Meyer, S.S.; Richardson, J.; et al. MHz gravitational wave constraints with decameter Michelson interferometers. Phys. Rev. D 2017, 95, 063002. [Google Scholar] [CrossRef]
- Vermeulen, S.M.; Aiello, L.; Ejlli, A.; Griffiths, W.L.; James, A.L.; Dooley, K.L.; Grote, H. An experiment for observing quantum gravity phenomena using twin table-top 3D interferometers. Class. Quantum Gravity 2021, 38, 085008. [Google Scholar] [CrossRef]
- Gertsenshtein, M. Wave Resonance of Light and Gravitational Waves. Sov. Phys. JETP 1961, 41, 113–114. [Google Scholar]
- Boccaletti, D.; De Sabbata, V.; Fortini, P.; Gualdi, C. Conversion of photons into gravitons and vice versa in a static electromagnetic field. Il Nuovo Cimento B (1965–1970) 1970, 70, 129–146. [Google Scholar] [CrossRef]
- Füzfa, A. How current loops and solenoids curve spacetime. Phys. Rev. D 2016, 93, 024014. [Google Scholar] [CrossRef] [Green Version]
- Sikivie, P. Experimental Tests of the “Invisible” Axion. Phys. Rev. Lett. 1983, 51, 1415–1417, Erratum in Phys. Rev. Lett. 1984, 52, 695. [Google Scholar] [CrossRef]
- Herman, N.; Fuzfa, A.; Lehoucq, L.; Clesse, S. Detecting planetary-mass primordial black holes with resonant electromagnetic gravitational-wave detectors. Phys. Rev. D 2021, 104, 023524. [Google Scholar] [CrossRef]
- Berlin, A.; Blas, D.; D’Agnolo, R.T.; Ellis, S.A.R.; Harnik, R.; Kahn, Y.; Schütte-Engel, J. Detecting high-frequency gravitational waves with microwave cavities. Phys. Rev. D 2022, 105, 116011. [Google Scholar] [CrossRef]
- Domcke, V.; Garcia-Cely, C.; Rodd, N.L. Novel Search for High-Frequency Gravitational Waves with Low-Mass Axion Haloscopes. Phys. Rev. Lett. 2022, 129, 041101. [Google Scholar] [CrossRef]
- Sokolov, A.V. Gravitational Wave Electrodynamics. arXiv 2022, arXiv:2203.03278. [Google Scholar]
- Peccei, R.D.; Quinn, H.R. CP Conservation in the Presence of Pseudoparticles. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef] [Green Version]
- Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279–282. [Google Scholar] [CrossRef]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Jaeckel, J.; Ringwald, A. The Low-Energy Frontier of Particle Physics. Annu. Rev. Nucl. Part. Sci. 2010, 60, 405–437. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.E. Weak-Interaction Singlet and Strong CP Invariance. Phys. Rev. Lett. 1979, 43, 103–107. [Google Scholar] [CrossRef]
- Kim, J.E.; Carosi, G. Axions and the strong CP problem. Rev. Mod. Phys. 2010, 82, 557–601. [Google Scholar] [CrossRef] [Green Version]
- Zhitnitsky, A.R. On Possible Suppression of the Axion Hadron Interactions. (In Russian). Sov. J. Nucl. Phys. 1980, 31, 260. [Google Scholar]
- Dine, M.; Fischler, W.; Srednicki, M. A simple solution to the strong {CP} problem with a harmless axion. Phys. Lett. B 1981, 104, 199–202. [Google Scholar] [CrossRef]
- Shifman, M.; Vainshtein, A.; Zakharov, V. Can confinement ensure natural {CP} invariance of strong interactions? Nucl. Phys. B 1980, 166, 493–506. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W. The not-so-harmless axion. Phys. Lett. B 1983, 120, 137–141. [Google Scholar] [CrossRef]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 1983, 120, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Abbott, L.; Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 1983, 120, 133–136. [Google Scholar] [CrossRef]
- Ipser, J.; Sikivie, P. Can Galactic Halos Be Made of Axions? Phys. Rev. Lett. 1983, 50, 925–927. [Google Scholar] [CrossRef]
- Svrcek, P.; Witten, E. Axions in string theory. J. High Energy Phys. 2006, 2006, 051. [Google Scholar] [CrossRef]
- Arvanitaki, A.; Dimopoulos, S.; Dubovsky, S.; Kaloper, N.; March-Russell, J. String axiverse. Phys. Rev. D 2010, 81, 123530. [Google Scholar] [CrossRef] [Green Version]
- Higaki, T.; Nakayama, K.; Takahashi, F. Cosmological constraints on axionic dark radiation from axion-photon conversion in the early Universe. J. Cosmol. Astropart. Phys. 2013, 2013, 030. [Google Scholar] [CrossRef] [Green Version]
- Baumann, D.; Green, D.; Wallisch, B. New Target for Cosmic Axion Searches. Phys. Rev. Lett. 2016, 117, 171301. [Google Scholar] [CrossRef] [Green Version]
- Co, R.T.; Hall, L.J.; Harigaya, K. Axion Kinetic Misalignment Mechanism. Phys. Rev. Lett. 2020, 124, 251802. [Google Scholar] [CrossRef]
- Co, R.T.; Harigaya, K. Axiogenesis. Phys. Rev. Lett. 2020, 124, 111602. [Google Scholar] [CrossRef] [Green Version]
- Co, R.T.; Hall, L.J.; Harigaya, K. Predictions for axion couplings from ALP cogenesis. J. High Energy Phys. 2021, 2021, 172. [Google Scholar] [CrossRef]
- Oikonomou, V.K. Unifying inflation with early and late dark energy epochs in axion F(R) gravity. Phys. Rev. D 2021, 103, 044036. [Google Scholar] [CrossRef]
- Sikivie, P. Invisible axion search methods. Rev. Mod. Phys. 2021, 93, 015004. [Google Scholar] [CrossRef]
- Sokolov, A.V.; Ringwald, A. Photophilic hadronic axion from heavy magnetic monopoles. J. High Energy Phys. 2021, 2021, 123. [Google Scholar] [CrossRef]
- Di Luzio, L.; Giannotti, M.; Nardi, E.; Visinelli, L. The landscape of QCD axion models. Phys. Rep. 2020, 870, 1–117. [Google Scholar] [CrossRef]
- Dror, J.A.; Murayama, H.; Rodd, N.L. Cosmic axion background. Phys. Rev. D 2021, 103, 115004. [Google Scholar] [CrossRef]
- Payez, A.; Evoli, C.; Fischer, T.; Giannotti, M.; Mirizzi, A.; Ringwald, A. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles. J. Cosmol. Astropart. Phys. 2015, 2015, 006. [Google Scholar] [CrossRef] [Green Version]
- McAllister, B.T.; Parker, S.R.; Tobar, M.E. Axion Dark Matter Coupling to Resonant Photons via Magnetic Field. Phys. Rev. Lett. 2016, 116, 161804, Erratum in Phys. Rev. Lett. 2016, 117, 159901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R.; Anerella, M.; Ghosh, A.; Sampson, W.; Schmalzle, J.; Konikowska, D.; Semertzidis, Y.K.; Shin, Y. High-Field Solenoid Development for Axion Dark Matter Search at CAPP/IBS. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- McAllister, B.T.; Parker, S.R.; Tobar, M.E. 3D Lumped LC Resonators as Low Mass Axion Haloscopes. Phys. Rev. 2016, D94, 042001. [Google Scholar] [CrossRef] [Green Version]
- Mcallister, B.T.; Parker, S.R.; Ivanov, E.N.; Tobar, M.E. Cross-Correlation Signal Processing for Axion and WISP Dark Matter Searches. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2019, 66, 236–243. [Google Scholar] [CrossRef]
- Kahn, Y.; Safdi, B.R.; Thaler, J. Broadband and Resonant Approaches to Axion Dark Matter Detection. Phys. Rev. Lett. 2016, 117, 141801. [Google Scholar] [CrossRef] [Green Version]
- Salemi, C.P.; Foster, J.W.; Ouellet, J.L.; Gavin, A.; Pappas, K.M.W.; Cheng, S.; Richardson, K.A.; Henning, R.; Kahn, Y.; Nguyen, R.; et al. Search for Low-Mass Axion Dark Matter with ABRACADABRA-10 cm. Phys. Rev. Lett. 2021, 127, 081801. [Google Scholar] [CrossRef] [PubMed]
- McAllister, B.T.; Flower, G.; Ivanov, E.N.; Goryachev, M.; Bourhill, J.; Tobar, M.E. The ORGAN experiment: An axion haloscope above 15 GHz. Phys. Dark Universe 2017, 18, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, A.; Dvali, G.; Majorovits, B.; Millar, A.; Raffelt, G.; Redondo, J.; Reimann, O.; Simon, F.; Steffen, F. Dielectric Haloscopes: A New Way to Detect Axion Dark Matter. Phys. Rev. Lett. 2017, 118, 091801. [Google Scholar] [CrossRef] [PubMed]
- Millar, A.J.; Raffelt, G.G.; Redondo, J.; Steffen, F.D. Dielectric haloscopes to search for axion dark matter: Theoretical foundations. J. Cosmol. Astropart. Phys. 2017, 2017, 061. [Google Scholar] [CrossRef] [Green Version]
- Ioannisian, A.N.; Kazarian, N.; Millar, A.J.; Raffelt, G.G. Axion-photon conversion caused by dielectric interfaces: Quantum field calculation. J. Cosmol. Astropart. Phys. 2017, 2017, 005. [Google Scholar] [CrossRef] [Green Version]
- Majorovits, B. MADMAX: A new road to axion dark matter detection. J. Phys. Conf. Ser. 2020, 1342, 012098. [Google Scholar] [CrossRef]
- Brubaker, B.M.; Zhong, L.; Lamoreaux, S.K.; Lehnert, K.W.; van Bibber, K.A. HAYSTAC axion search analysis procedure. Phys. Rev. D 2017, 96, 123008. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Youn, S.; Ahn, S.; Kim, J.E.; Semertzidis, Y.K. Concept of multiple-cell cavity for axion dark matter search. Phys. Lett. B 2018, 777, 412–419. [Google Scholar] [CrossRef]
- Irastorza, I.G.; Redondo, J. New experimental approaches in the search for axion-like particles. Prog. Part. Nucl. Phys. 2018, 102, 89–159. [Google Scholar] [CrossRef] [Green Version]
- Ouellet, J.L.; Salemi, C.P.; Foster, J.W.; Henning, R.; Bogorad, Z.; Conrad, J.M.; Formaggio, J.A.; Kahn, Y.; Minervini, J.; Radovinsky, A.; et al. Design and implementation of the ABRACADABRA-10 cm axion dark matter search. Phys. Rev. D 2019, 99, 052012. [Google Scholar] [CrossRef] [Green Version]
- Nagano, K.; Fujita, T.; Michimura, Y.; Obata, I. Axion Dark Matter Search with Interferometric Gravitational Wave Detectors. Phys. Rev. Lett. 2019, 123, 111301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goryachev, M.; McAllister, B.T.; Tobar, M.E. Axion detection with precision frequency metrology. Phys. Dark Universe 2019, 26, 100345, Corrigendum in Phys. Dark Universe 2021, 32, 100787. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Themann, H.; Lee, M.J.; Ko, B.R.; Semertzidis, Y.K. First axion dark matter search with toroidal geometry. Phys. Rev. D 2017, 96, 061102. [Google Scholar] [CrossRef]
- Ouellet, J.L.; Salemi, C.P.; Foster, J.W.; Henning, R.; Bogorad, Z.; Conrad, J.M.; Formaggio, J.A.; Kahn, Y.; Minervini, J.; Radovinsky, A.; et al. First Results from ABRACADABRA-10 cm: A Search for Sub-μeV Axion Dark Matter. Phys. Rev. Lett. 2019, 122, 121802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Elwood, B.D.; Evans, M.; Thaler, J. Searching for axion dark matter with birefringent cavities. Phys. Rev. D 2019, 100, 023548. [Google Scholar] [CrossRef] [Green Version]
- Marsh, D.J.E.; Fong, K.C.; Lentz, E.W.; Šmejkal, L.; Ali, M.N. Proposal to Detect Dark Matter using Axionic Topological Antiferromagnets. Phys. Rev. Lett. 2019, 123, 121601. [Google Scholar] [CrossRef] [Green Version]
- Schütte-Engel, J.; Marsh, D.J.; Millar, A.J.; Sekine, A.; Chadha-Day, F.; Hoof, S.; Ali, M.N.; Fong, K.C.; Hardy, E.; Šmejkal, L. Axion quasiparticles for axion dark matter detection. J. Cosmol. Astropart. Phys. 2021, 2021, 066. [Google Scholar] [CrossRef]
- Lawson, M.; Millar, A.J.; Pancaldi, M.; Vitagliano, E.; Wilczek, F. Tunable Axion Plasma Haloscopes. Phys. Rev. Lett. 2019, 123, 141802. [Google Scholar] [CrossRef] [Green Version]
- Anastassopoulos, V.; Aune, S.; Barth, K.; Belov, A.; Bräuninger, H.; Cantatore, G.; Carmona, J.M.; Castel, J.F.; Cetin, S.A.; Christensen, F.; et al. New CAST limit on the axion–photon interaction. Nat. Phys. 2017, 13, 584–590. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Al Kenany, S.; Backes, K.M.; Brubaker, B.M.; Cahn, S.B.; Carosi, G.; Gurevich, Y.V.; Kindel, W.F.; Lamoreaux, S.K.; Lehnert, K.W.; et al. Results from phase 1 of the HAYSTAC microwave cavity axion experiment. Phys. Rev. D 2018, 97, 092001. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Ahn, S.; Choi, J.; Ko, B.R.; Semertzidis, Y.K. Axion Dark Matter Search around 6.7 μeV. Phys. Rev. Lett. 2020, 124, 101802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobar, M.E.; McAllister, B.T.; Goryachev, M. Broadband electrical action sensing techniques with conducting wires for low-mass dark matter axion detection. Phys. Dark Universe 2020, 30, 100624. [Google Scholar] [CrossRef]
- Gelmini, G.B.; Millar, A.J.; Takhistov, V.; Vitagliano, E. Probing dark photons with plasma haloscopes. Phys. Rev. D 2020, 102, 043003. [Google Scholar] [CrossRef]
- Berlin, A.; D’Agnolo, R.T.; Ellis, S.A.; Nantista, C.; Neilson, J.; Schuster, P.; Tantawi, S.; Toro, N.; Zhou, K. Axion dark matter detection by superconducting resonant frequency conversion. J. High Energy Phys. 2020, 2020, 88. [Google Scholar] [CrossRef]
- Lasenby, R. Parametrics of electromagnetic searches for axion dark matter. Phys. Rev. D 2021, 103, 075007. [Google Scholar] [CrossRef]
- Gramolin, A.V.; Aybas, D.; Johnson, D.; Adam, J.; Sushkov, A.O. Search for axion-like dark matter with ferromagnets. Nat. Phys. 2021, 17, 79–84. [Google Scholar] [CrossRef]
- Abeln, A.; Altenmüller, K.; Arguedas Cuendis, S.; Armengaud, E.; Attié, D.; Aune, S.; Basso, S.; Bergé, L.; Biasuzzi, B.; Borges De Sousa, P.T.C.; et al. Conceptual design of BabyIAXO, the intermediate stage towards the International Axion Observatory. J. High Energy Phys. 2021, 2021, 137. [Google Scholar] [CrossRef]
- Thomson, C.A.; McAllister, B.T.; Goryachev, M.; Ivanov, E.N.; Tobar, M.E. Upconversion Loop Oscillator Axion Detection Experiment: A Precision Frequency Interferometric Axion Dark Matter Search with a Cylindrical Microwave Cavity. Phys. Rev. Lett. 2021, 126, 081803, Erratum in Phys. Rev. Lett. 2021, 127, 019901(E). [Google Scholar] [CrossRef]
- Gatti, C.; Gianotti, P.; Ligi, C.; Raggi, M.; Valente, P. Dark Matter Searches at LNF. Universe 2021, 7, 236. [Google Scholar] [CrossRef]
- Kishimoto, Y.; Suzuki, Y.; Ogawa, I.; Mori, Y.; Yamashita, M. Development of a cavity with photonic crystal structure for axion searches. Prog. Theor. Exp. Phys. 2021, 2021, 063H01. [Google Scholar] [CrossRef]
- Devlin, J.A.; Borchert, M.J.; Erlewein, S.; Fleck, M.; Harrington, J.A.; Latacz, B.; Warncke, J.; Wursten, E.; Bohman, M.A.; Mooser, A.H.; et al. Constraints on the Coupling between Axionlike Dark Matter and Photons Using an Antiproton Superconducting Tuned Detection Circuit in a Cryogenic Penning Trap. Phys. Rev. Lett. 2021, 126, 041301. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.; Lee, D.; Chung, W.; Ahn, D.; Byun, H.; Caspers, F.; Choi, H.; Choi, J.; Chung, Y.; Jeong, H.; et al. First Results from an Axion Haloscope at CAPP around 10.7 μeV. Phys. Rev. Lett. 2021, 126, 191802. [Google Scholar] [CrossRef] [PubMed]
- Backes, K.M.; Palken, D.A.; Kenany, S.A.; Brubaker, B.M.; Cahn, S.B.; Droster, A.; Hilton, G.C.; Ghosh, S.; Jackson, H.; Lamoreaux, S.K.; et al. A quantum enhanced search for dark matter axions. Nature 2021, 590, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Iwazaki, A. Axion-radiation conversion by super and normal conductors. Nucl. Phys. B 2021, 963, 115298. [Google Scholar] [CrossRef]
- Chigusa, S.; Moroi, T.; Nakayama, K. Axion/hidden-photon dark matter conversion into condensed matter axion. J. High Energy Phys. 2021, 2021, 74. [Google Scholar] [CrossRef]
- Liang, X.; Peshkov, E.; Van Waerbeke, L.; Zhitnitsky, A. Proposed network to detect axion quark nugget dark matter. Phys. Rev. D 2021, 103, 096001. [Google Scholar] [CrossRef]
- Álvarez Melcón, A.; Arguedas Cuendis, S.; Baier, J.; Barth, K.; Bräuninger, H.; Calatroni, S.; Cantatore, G.; Caspers, F.; Castel, J.F.; Cetin, S.A.; et al. First results of the CAST-RADES haloscope search for axions at 34.67 micro eV. J. High Energy Phys. 2021, 2021, 75. [Google Scholar] [CrossRef]
- Alesini, D.; Babusci, D.; Braggio, C.; Carugno, G.; Crescini, N.; D’Agostino, D.; D’Elia, A.; Di Gioacchino, D.; Di Vora, R.; Falferi, P.; et al. Search for Galactic axions with a high-Q dielectric cavity. Phys. Rev. D 2022, 106, 052007. [Google Scholar] [CrossRef]
- Wainstein, L.A.; Zubakov, V.D. Extraction of Signals from Noise; Prentice Hall: Englewood Cliffs, NJ, USA, 1962. [Google Scholar]
- Kim, D.; Jeong, J.; Youn, S.; Kim, Y.; Semertzidis, Y.K. Revisiting the detection rate for axion haloscopes. J. Cosmol. Astropart. Phys. 2020, 2020, 066. [Google Scholar] [CrossRef] [Green Version]
- Dicke, R.H. The Measurement of Thermal Radiation at Microwave Frequencies. Rev. Sci. Instrum. 1946, 17, 268–275. [Google Scholar] [CrossRef]
- Montgomery, C.G.; Dicke, R.H.; Purcell, E.M. (Eds.) Principles of Microwave Circuits; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
- Dicke, R.H. General Microwave Circuit Theorems. In Principles of Microwave Circuits; Montgomery, C., Dicke, R., Purcell, E., Eds.; McGraw-Hill: New York, NY, USA, 1987; Chapter 5; pp. 130–161. [Google Scholar]
- Tobar, M.; Blair, D. A generalized equivalent circuit applied to a tunable sapphire-loaded superconducting cavity. IEEE Trans. Microw. Theory Tech. 1991, 39, 1582–1594. [Google Scholar] [CrossRef]
- Tobar, M.E.; McAllister, B.T.; Goryachev, M. Poynting vector controversy in axion modified electrodynamics. Phys. Rev. D 2022, 105, 045009. [Google Scholar] [CrossRef]
- Bartram, C.; Braine, T.; Burns, E.; Cervantes, R.; Crisosto, N.; Du, N.; Korandla, H.; Leum, G.; Mohapatra, P.; Nitta, T.; et al. Search for Invisible Axion Dark Matter in the 3.3–4.2 μeV Mass Range. Phys. Rev. Lett. 2021, 127, 261803. [Google Scholar] [CrossRef] [PubMed]
- Quiskamp, A.; McAllister, B.T.; Altin, P.; Ivanov, E.N.; Goryachev, M.; Tobar, M.E. Direct search for dark matter axions excluding ALP cogenesis in the 63- to 67-micro eV range with the ORGAN experiment. Sci. Adv. 2022, 8, eabq3765. [Google Scholar] [CrossRef] [PubMed]
- Tobar, M.E.; Blair, D.G. Sensitivity analysis of a resonant-mass gravitational wave antenna with a parametric transducer. Rev. Sci. Instruments 1995, 66, 2751–2759. [Google Scholar] [CrossRef]
- Fischer, H.; Liang, X.; Zhitnitsky, A.; Semertzidis, Y.; Zioutas, K. New mechanism producing axions in the AQN model and how the CAST can discover them. Phys. Rev. D 2018, 98, 043013. [Google Scholar] [CrossRef] [Green Version]
- Budker, D.; Flambaum, V.V.; Liang, X.; Zhitnitsky, A. Axion quark nuggets and how a global network can discover them. Phys. Rev. D 2020, 101, 043012. [Google Scholar] [CrossRef] [Green Version]
- Crisosto, N.; Sikivie, P.; Sullivan, N.S.; Tanner, D.B.; Yang, J.; Rybka, G. ADMX SLIC: Results from a Superconducting LC Circuit Investigating Cold Axions. Phys. Rev. Lett. 2020, 124, 241101. [Google Scholar] [CrossRef]
- The ADMX Collaboration, Low Frequency Searches with Axion Cavity Haloscopes. 2022; in preparation.
- Berlin, A.; Belomestnykh, S.; Blas, D.; Frolov, D.; Brady, A.J.; Braggio, C.; Carena, M.; Cervantes, R.; Checchin, M.; Contreras-Martinez, C.; et al. Searches for New Particles, Dark Matter, and Gravitational Waves with SRF Cavities. arXiv 2022, arXiv:2203.12714. [Google Scholar]
- Berlin, A.; D’Agnolo, R.T.; Ellis, S.A.R.; Zhou, K. Heterodyne broadband detection of axion dark matter. Phys. Rev. D 2021, 104, L111701. [Google Scholar] [CrossRef]
- Lasenby, R. Microwave cavity searches for low-frequency axion dark matter. Phys. Rev. D 2020, 102, 015008. [Google Scholar] [CrossRef]
- Thomson, C.A.; Goryachev, M.; McAllister, B.T.; Ivanov, E.N.; Tobar, M.E. Searching for Low-Mass Axions using Upconversion. 2022; under preperation. [Google Scholar]
- Bourhill, J.F.; Paterson, E.C.I.; Goryachev, M.; Tobar, M.E. Twisted Anyon Cavity Resonators with Bulk Modes of Chiral Symmetry and Sensitivity to Ultra-Light Axion Dark Matter. arXiv 2022, arXiv:2208.01640. [Google Scholar]
- Parker, S.R.; Hartnett, J.G.; Povey, R.G.; Tobar, M.E. Cryogenic resonant microwave cavity searches for hidden sector photons. Phys. Rev. D 2013, 88, 112004. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, E.N.; Tobar, M.E.; Woode, R.A. Microwave interferometry: Application to precision measurements and noise reduction techniques. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1998, 45, 1526–1536. [Google Scholar] [CrossRef]
- Ivanov, E.N.; Tobar, M.E. Low phase-noise microwave oscillators with interferometric signal processing. IEEE Trans. Microw. Theory Tech. 2006, 54, 3284–3294. [Google Scholar] [CrossRef]
- Ivanov, E.N.; Tobar, M.E. Low phase-noise sapphire crystal microwave oscillators: Current status. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2009, 56, 263–269. [Google Scholar] [CrossRef]
- Posen, S.; Romanenko, A.; Grassellino, A.; Melnychuk, O.; Sergatskov, D. Ultralow Surface Resistance via Vacuum Heat Treatment of Superconducting Radio-Frequency Cavities. Phys. Rev. Appl. 2020, 13, 014024. [Google Scholar] [CrossRef] [Green Version]
- Martinello, M.; Checchin, M.; Romanenko, A.; Grassellino, A.; Aderhold, S.; Chandrasekeran, S.K.; Melnychuk, O.; Posen, S.; Sergatskov, D.A. Field-Enhanced Superconductivity in High-Frequency Niobium Accelerating Cavities. Phys. Rev. Lett. 2018, 121, 224801. [Google Scholar] [CrossRef]
- Rubiola, E.; Brendel, R. The AM noise mechanism in oscillators. In Proceedings of the 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time Forum, Besancon, France, 20–24 April 2009; pp. 33–39. [Google Scholar]
- Campbell, W. Invited Article: The Multimode Acoustic Gravitational Wave Experiment: MAGE. Sci. Rep. 2022; in preparation. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobar, M.E.; Thomson, C.A.; Campbell, W.M.; Quiskamp, A.; Bourhill, J.F.; McAllister, B.T.; Ivanov, E.N.; Goryachev, M. Comparing Instrument Spectral Sensitivity of Dissimilar Electromagnetic Haloscopes to Axion Dark Matter and High Frequency Gravitational Waves. Symmetry 2022, 14, 2165. https://doi.org/10.3390/sym14102165
Tobar ME, Thomson CA, Campbell WM, Quiskamp A, Bourhill JF, McAllister BT, Ivanov EN, Goryachev M. Comparing Instrument Spectral Sensitivity of Dissimilar Electromagnetic Haloscopes to Axion Dark Matter and High Frequency Gravitational Waves. Symmetry. 2022; 14(10):2165. https://doi.org/10.3390/sym14102165
Chicago/Turabian StyleTobar, Michael E., Catriona A. Thomson, William M. Campbell, Aaron Quiskamp, Jeremy F. Bourhill, Benjamin T. McAllister, Eugene N. Ivanov, and Maxim Goryachev. 2022. "Comparing Instrument Spectral Sensitivity of Dissimilar Electromagnetic Haloscopes to Axion Dark Matter and High Frequency Gravitational Waves" Symmetry 14, no. 10: 2165. https://doi.org/10.3390/sym14102165
APA StyleTobar, M. E., Thomson, C. A., Campbell, W. M., Quiskamp, A., Bourhill, J. F., McAllister, B. T., Ivanov, E. N., & Goryachev, M. (2022). Comparing Instrument Spectral Sensitivity of Dissimilar Electromagnetic Haloscopes to Axion Dark Matter and High Frequency Gravitational Waves. Symmetry, 14(10), 2165. https://doi.org/10.3390/sym14102165