Fractional Jensen-Mercer Type Inequalities Involving Generalized Raina’s Function and Applications
Abstract
:1. Introduction
- 1.
- For , we obtain Raina’s fractional integral, see [6].
- 2.
- If we set and , then we obtain the classical Riemann-Liouville fractional integrals.
- 1.
- If we take and in Definition 5, then we have -Riemann-Liouville fractional integrals.
- 2.
- If we set and in Definition 5, then we get k-Riemann-Liouville fractional integrals.
- 3.
- If we choose and in Definition 5, then we obtain Riemann-Liouville fractional integrals.
2. Main Results
Auxiliary Results
3. Special Cases
4. Applications
Applications to Special Means
- 1.
- The arithmetic mean:
- 2.
- The generalized logarithmic mean: , where n belongs to .
5. Graphical Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k-fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Akkurt, A.; Yildirim, M.E.; Yildirim, H. On some integral inequalities for (k, h)-riemannliouville fractional integral. New Trends Math. Sci. 2016, 4, 138–146. [Google Scholar] [CrossRef]
- Awan, M.U.; Talib, S.; Chu, Y.M.; Noor, M.A.; Noor, K.I. Some new refinements of Hermite–Hadamard-type inequalities involving ψk-Reimann–Liouville fractional integrals and applications. Math. Probl. Eng. 2020, 2020, 3051920. [Google Scholar] [CrossRef] [Green Version]
- Tunc, T.; Budak, H.; Usta, F.; Sarikaya, M.Z. On new generalized fractional integral operators and related inequalities. Konuralp J. Math. 2017, 8, 268–278. [Google Scholar]
- Raina, R.K. On generalized wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Set, E.; Choi, J.; Gozpinar, A. Hermite–Hadamard type inequalities for the generalized k-fractional integral operator. J. Inequalities Appl. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Wang, J.; Regan, D.O. On the Hermite–Hadamard type inequality for ψ-Riemann–Liouville fractional integrals via convex functions. J. Inequalities Appl. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Nie, J.; Liu, J.; Zhang, J.; Du, T. Estimation-type results on the k-fractional Simpson-type integral inequalities and applications. J. Taibah Univ. Sci. 2019, 13, 932–940. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Generalized fractional Hermite–Hadamard inequalities. Miskolc Math. Notes 2020, 21, 1001–1011. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 97, 2403–2407. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C.E.M. Selected topics on Hermite–Hadamard inequalities and applications. RGMIA Monographs, Victoria University, Footscray, Australia, 2000. RGMIA Monographs, Victoria University, Footscray, Australia, 2000. [Google Scholar]
- Wu, S.H.; Awan, M.U.; Mihai, M.V.; Noor, M.A.; Talib, S. Estimates of upper bound for a k-th order differentiable functions involving Riemann–Liouville integrals via higher order strongly h-preinvex functions. J. Inequalities Appl. 2019, 2019, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Guessab, A. Direct and converse results for generalized multivariate Jensen-type inequalities. J. Nonlinear Convex Anal. 2012, 13, 777–797. [Google Scholar]
- Mercer, A.M.D. A variant of jensen’s inequality. J. Inequal. Pure Appl. Math 2003, 4, 73. [Google Scholar]
- Pavic, Z. The Jensen–Mercer inequality with infinite convex combinations. Math. Sci. Appl.-Notes 2019, 7, 19–27. [Google Scholar] [CrossRef]
- Ogulmus, H.; Sarikaya, M.Z. Hermite–Hadamard–Mercer type inequalities for fractional integrals. Filomat 2021, 35, 2425–2436. [Google Scholar] [CrossRef]
- Khan, M.A.; Pecaric, J. New refinements of the Jensen–Mercer inequality associated to positive n-tuples. Armen. J. Math. 2020, 12, 1–12. [Google Scholar]
- Moradi, H.R.; Furuichi, S. Improvement and generalization of some Jensen–Mercer-type inequalities. J. Math. Inequalities 2020, 14, 377–383. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nonlaopon, K.; Awan, M.U.; Asif, U.; Javed, M.Z.; Slimane, I.; Kashuri, A. Fractional Jensen-Mercer Type Inequalities Involving Generalized Raina’s Function and Applications. Symmetry 2022, 14, 2204. https://doi.org/10.3390/sym14102204
Nonlaopon K, Awan MU, Asif U, Javed MZ, Slimane I, Kashuri A. Fractional Jensen-Mercer Type Inequalities Involving Generalized Raina’s Function and Applications. Symmetry. 2022; 14(10):2204. https://doi.org/10.3390/sym14102204
Chicago/Turabian StyleNonlaopon, Kamsing, Muhammad Uzair Awan, Usama Asif, Muhammad Zakria Javed, Ibrahim Slimane, and Artion Kashuri. 2022. "Fractional Jensen-Mercer Type Inequalities Involving Generalized Raina’s Function and Applications" Symmetry 14, no. 10: 2204. https://doi.org/10.3390/sym14102204
APA StyleNonlaopon, K., Awan, M. U., Asif, U., Javed, M. Z., Slimane, I., & Kashuri, A. (2022). Fractional Jensen-Mercer Type Inequalities Involving Generalized Raina’s Function and Applications. Symmetry, 14(10), 2204. https://doi.org/10.3390/sym14102204