An Ising Model for Supercooled Liquids and the Glass Transition
Abstract
:1. Introduction
2. The Orthogonal Ising Model, Foundations
2.1. Standard Ising Model
2.2. Orthogonal Dynamics, with Intermittent Interactions
3. The Orthogonal Ising Model, Simulations
3.1. Simulation Details
3.2. Numerical Analysis of Simulations
4. The Orthogonal Ising Model, Theory
4.1. Primary Response from Energy Fluctuations in Mesoscopic Mean-Field Theory
4.2. Analysis of Data
5. Results
5.1. Fluctuations as a Function of Time
5.2. Loss as a Function of Frequency
5.3. Temperature Dependence of Response Times from Measurements
5.4. Temperature Dependence of Response Times from Simulations
5.5. Size of Independently Relaxing Regions from Primary Response
5.6. Hysteresis as a Function of Temperature
6. Discussion
6.1. Summary of Results from the OIM
6.2. Comparison to Some Other Models of Glass-Forming Liquids
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angell, C.A. Ten questions on glassformers, and a real space ‘excitations’ model with some answers on fragility and phase transitions. J. Phys. Condens. Matter 2000, 12, 6463–6475. [Google Scholar] [CrossRef]
- Dyre, J.C. Ten themes of viscous liquid dynamics. J. Phys. Condens. Matter 2007, 19, 205105. [Google Scholar] [CrossRef]
- Niss, K.; Hecksher, T. Perspective: Searching for simplicity rather than universality in glass-forming liquids. J. Chem. Phys. 2018, 149, 230901. [Google Scholar] [CrossRef] [PubMed]
- Brush, S.G. History of the Lenz-Ising model. Rev. Mod. Phys. 1967, 39, 883–893. [Google Scholar] [CrossRef]
- Niss, M. History of the Lenz-Ising model 1920–1950: From ferromagnetic to cooperative phenomena. Arch. Hist. Exact Sci. 2005, 59, 267–318. [Google Scholar] [CrossRef]
- Donth, E. The size of cooperatively rearranging regions at the glass transition. J. Non-Cryst. Solids 1982, 53, 325–330. [Google Scholar] [CrossRef]
- Yukalov, V.I. Phase transitions and heterophase fluctuations. Phys. Rep. 1991, 208, 395–489. [Google Scholar] [CrossRef]
- Böhmer, R.; Chamberlin, R.V.; Diezemann, G.; Geil, B.; Heuer, A.; Hinze, G.; Kuebler, S.C.; Richert, R.; Schiener, B.; Sillescu, H.; et al. Nature of the non-exponential primary relaxation in structural glass-formers probed by dynamically selective experiments. J. Non-Cryst. Solids 1998, 235–237, 1–9. [Google Scholar] [CrossRef]
- Ediger, M.D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 2000, 51, 99–128. [Google Scholar] [CrossRef] [Green Version]
- Richert, R. Heterogeneous dynamics in liquids: Fluctuations in space and time. J. Phys. Condens. Matter 2002, 14, R703–R738. [Google Scholar] [CrossRef]
- Tracht, U.; Wilhelm, M.; Heuer, A.; Feng, H.; Schmidt-Rohr, K.; Spiess, H.W. Length scale of dynamic heterogeneities at the glass transition determined by miltidimensional nuclear magnetic resonance. Phys. Rev. Lett. 1998, 81, 2727–2730. [Google Scholar] [CrossRef]
- Reinsberg, S.A.; Qiu, X.H.; Wilhelm, M.; Spiess, H.W.; Ediger, M.D. Length scale of dynamic heterogeneity in supercooled glycerol. J. Chem. Phys. 2001, 114, 7299–7302. [Google Scholar] [CrossRef]
- Reinsberg, S.A.; Heuer, A.; Doliwa, B.; Zimmermann, H.; Spiess, H.W. Comparative study of the NMR length scale of dynamic heterogeneities of three different glass formers. J. Non-Cryst. Solids 2002, 307–310, 208–214. [Google Scholar] [CrossRef]
- Qiu, X.H.; Ediger, M.D. Length scale of dynamic heterogeneity in supercooled D-sorbitol: Comparison to model predictions. J. Phys. Chem. B 2003, 107, 459–464. [Google Scholar]
- Berthier, L.; Biroli, G.; Bouchaud, J.P.; Cipelletti, L.; El Masri, D.; L’Hôte, D.; Ladieu, F.; Pierno, M. Direct experimental evidence of a growing length scale accompanying the glass transition. Science 2005, 310, 1797–1800. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, L.J. Heterogeneity in single-molecule observables in the study of supercooled liquids. Ann. Rev. Phys. Chem. 2013, 64, 177–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kac, M. The role of models in understanding phase transitions. In Critical Phenomena in Alloys, Magnets and Superconductors; Mills, R.E., Ed.; McGraw-Hill: New York, NY, USA, 1971; pp. 23–39. [Google Scholar]
- Niss, M. History of the Lenz-Ising model 1950–1965: From irrelevance to relevance. Arch. Hist. Exact Sci. 2009, 63, 243–287. [Google Scholar] [CrossRef]
- Kawasaki, K. Diffusion constants near the critical point for time-dependent Ising models. I. Phys. Rev. 1966, 145, 224–230. [Google Scholar] [CrossRef]
- Fredrickson, G.H.; Andersen, H.C. Kinetic Ising model of the glass transition. Phys. Rev. Lett. 1984, 53, 1244–1247. [Google Scholar] [CrossRef]
- Newman, M.E.J.; Moore, C. Glassy dynamics and aging in an exactly solvable spin model. Phys. Rev. E 1999, 60, 5068–5072. [Google Scholar] [CrossRef] [Green Version]
- Garrahan, J.P. Glassiness through the emergence of effective dynamical constraints on interacting systems. J. Phys. Condens. Matter 2002, 14, 1571–1579. [Google Scholar] [CrossRef]
- Berthier, L.; Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 2011, 83, 587–645. [Google Scholar] [CrossRef] [Green Version]
- Chamberlin, R.V. Monte Carlo simulations including energy from an entropic constraint. Phys. A 2012, 391, 5384–5391. [Google Scholar] [CrossRef]
- Jack, R.L.; Garrahan, J.P. Phase transition for quenched coupled replicas in a plaquette spin model of glasses. Phys. Rev. Lett. 2016, 116, 055702. [Google Scholar] [CrossRef] [Green Version]
- Chamberlin, R.V. Mesoscopic mean-field theory for supercooled liquids and the glass transition. Phys. Rev. Lett. 1999, 82, 2520–2523. [Google Scholar] [CrossRef]
- Chamberlin, R.V. The big world of nanothermodynamics. Entropy 2015, 17, 52–73. [Google Scholar] [CrossRef] [Green Version]
- Fichthorn, K.A.; Weinberg, W.H. Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys. 1991, 95, 1090–1096. [Google Scholar] [CrossRef] [Green Version]
- Voter, A.F.; Montalenti, F.; Germann, T.C. Extending the time scale in atomistic simulations of materials. Annu. Rev. Mater. Res. 2002, 32, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Chamberlin, R.V.; Clark, M.R.; Mujica, V.; Wolf, G.H. Multiscale thermodynamics: Energy, entropy, and symmetry from atoms to bulk behavior. Symmetry 2021, 13, 721. [Google Scholar] [CrossRef]
- Häggkvist, P.; Rosengren, A.; Lundow, P.H.; Markström, K.; Andrén, D.; Kundrotas, P. On the Ising model for the simple cubic lattice. Adv. Phys. 2007, 56, 653–755. [Google Scholar] [CrossRef]
- Newman, M.E.J.; Barkema, G.T. Monte Carlo Methods in Statistical Physics; Clarendon Press: Oxford, UK, 1999. [Google Scholar]
- Schiener, B.; Böhmer, R.; Loidl, A.; Chamberlin, R.V. Nonresonant spectral hole burning in the slow dielectric response of supercooled liquids. Science 1996, 274, 752–754. [Google Scholar] [CrossRef]
- Schiener, B.; Chamberlin, R.V.; Diezemann, G.; Böhmer, R. Nonresonant dielectric hole burning spectroscopy of supercooled liquids. J. Chem. Phys. 1997, 107, 7746–7761. [Google Scholar] [CrossRef]
- Weinstein, S.; Richert, R. Heterogeneous thermal excitation and relaxation in supercooled liquids. J. Chem. Phys. 2005, 124, 224506. [Google Scholar] [CrossRef]
- Chamberlin, R.V.; Böhmer, R.; Richert, R. Nonresonant spectral hole burning in liquids and solids. In Nonlinear Dielectric Spectroscopy; Richert, R., Ed.; Springer: Cham, Switzerland, 2018; pp. 127–185. [Google Scholar]
- Chang, I.; Fujara, F.; Geil, B.; Heuberger, G.; Mangel, T.; Sillescu, H. Translation and rotational molecular motion in supercooled liquids studied by NMR and forced Rayleigh scattering. J. Non-Cryst. Solids 1994, 172–174, 248–255. [Google Scholar] [CrossRef]
- Edmond, K.V.; Elsasser, M.T.; Hunter, G.L.; Pine, D.J.; Weeks, E.R. Decoupling of rotational and translational diffusion in supercooled colloidal fluids. Proc. Nat. Acad. Sci. USA 2012, 109, 17891–17896. [Google Scholar] [CrossRef] [Green Version]
- Chamberlin, R.V.; Mujica, V.; Izvekov, S.; Larentzos, J.P. Energy localization and excess fluctuations from long-range interactions in equilibrium molecular dynamics. Phys. A 2020, 540, 123228. [Google Scholar] [CrossRef] [Green Version]
- Hänggi, P.; Talkner, P.; Borkovec, M. Reaction-rate theory: Fifty years after Kramers. Rev. Mod. Phys. 1990, 62, 251–341. [Google Scholar] [CrossRef]
- Zhou, H.X.; Zwanzig, R. A rate process with an entropy barrier. J. Chem. Phys. 1991, 94, 6147–6152. [Google Scholar] [CrossRef]
- Pedone, D.; Langecker, M.; Abstreiter, G.; Rant, U. A pore-cavity-pore device to trap and investigate single nanoparticles and DNA molecules in a femtoliter compartment: Confined diffusion and narrow escape. Nano Lett. 2011, 11, 1561–1567. [Google Scholar] [CrossRef]
- Cofer-Shabica, D.V.; Stratt, R.M. What is special about how roaming chemical reactions traverse their potential surfaces? Differences in geodesic paths between roaming and non-roaming events. J. Chem. Phys. 2017, 146, 214303. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics, 2nd ed.; Pergamon Press: Oxford, UK, 1969. [Google Scholar]
- Pathria, R.K.; Beale, P. Statistical Mechanics, 3rd ed.; Elsevier: Oxford, UK, 1996. [Google Scholar]
- Gradshtein, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products; Jeffrey, A., Zwillinger, D., Eds.; Academic Press: Burlington, MA, USA, 2007. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards, Applied Mathematics Series, 55; US Government Printing Office: Washington, DC, USA, 1967.
- Hall, R.W.; Wolynes, P.G. The aperiodic crystal picture and free energy barriers in glasses. J. Chem. Phys. 1987, 86, 2943–2948. [Google Scholar] [CrossRef]
- Drozd-Rzoska, A.; Rzoska, S.J.; Starzonek, S. New paradigm for configurational entropy in glass-forming systems. Sci. Rep. 2022, 12, 3058. [Google Scholar] [CrossRef]
- Bässler, H. Viscous flow in supercooled liquids analyzed in terms of transport theory for random media with energetic disorder. Phys. Rev. Lett. 1987, 58, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Chamberlin, R.V.; Haines, D.N. Percolation model for relaxation in random systems. Phys. Rev. Lett. 1990, 65, 2197–2200. [Google Scholar] [CrossRef]
- Chamberlin, R.V.; Holtzberg, F. Remanent magnetization of a simple ferromagnet. Phys. Rev. Lett. 1991, 67, 1606–1609. [Google Scholar] [CrossRef] [PubMed]
- Chamberlin, R.V.; Scheinfein, M.R. Slow magnetic relaxation in iron: A ferromagnetic liquid. Science 1993, 260, 1098–1101. [Google Scholar] [CrossRef]
- Chamberlin, R.V.; Böhmer, R.; Sanchez, E.; Angell, C.A. Signature of ergodicity in the dynamic response of amorphous systems. Phys. Rev. B 1992, 46, 5787–5790. [Google Scholar] [CrossRef]
- Hansen, C.; Richert, R.; Fischer, E.W. Dielectric loss spectra of organic glass formers and Chamberlin cluster model. J. Non-Cryst. Solids 1997, 215, 293–300. [Google Scholar] [CrossRef]
- Stickel, F.; Fischer, E.W.; Richert, R. Dynamics of glass-forming liquids. I. Temperature derivative of dielectric relaxation data. J. Chem. Phys. 1995, 102, 6251–6257. [Google Scholar] [CrossRef]
- Stickel, F.; Fischer, E.W.; Richert, R. Dynamics of glass-forming liquids. II. Detailed comparison of dielectric relaxation, dc-conductivity, and viscosity data. J. Chem. Phys. 1996, 104, 2043–2055. [Google Scholar] [CrossRef]
- Stickel, F. Untersuchung der Dynamik in Niedermolekularen Flüssigkeiten mit Dielectrischer Spektroskopie. Ph.D. Thesis, Universität Mainz, Verlag Shaker, Aachen, Germany, 1995. [Google Scholar]
- Hecksher, T.; Nielsen, A.I.; Olsen, N.B.; Dyre, J.C. Little evidence for dynamic divergence in ultraviscous molecular liquids. Nat. Phys. 2008, 4, 737–741. [Google Scholar] [CrossRef]
- Mauro, J.C.; Yue, Y.; Ellison, A.J.; Gupta, P.K.; Allan, D.C. Viscosity of glass-forming liquids. Proc. Natl. Acad. Sci. USA 2009, 106, 19780. [Google Scholar] [CrossRef] [Green Version]
- Lunkenheimer, P.; Kastner, S.; Köhler, M.; Loidl, A. Temperature development of glassy α-relaxation dynamics determined by broadband dielectric spectroscopy. Phys. Rev. E 2010, 81, 051504. [Google Scholar] [CrossRef] [Green Version]
- Gainaru, C.; Lips, O.; Troshagina, A.; Kahlau, R.; Brodin, A.; Fujara, F.; Rössler, E.A. On the nature of the high-frequency relaxation in a molecular glass former: A joint study of glycerol by field cycling NMR, dielectric spectroscopy, and light scattering. J. Chem. Phys. 2008, 128, 174505. [Google Scholar] [CrossRef]
- Böhmer, R.; Hinze, G. Reorientations in supercooled glycerol studied by two-dimensional time-domain deuteron nuclear magnetic resonance spectroscopy. J. Chem. Phys 1998, 109, 241–248. [Google Scholar] [CrossRef]
- Böhmer, R.; Diezemann, G.; Hinze, G.; Rössler, E. Dynamics of supercooled liquids and glassy solids. Prog. Nucl. Magn. Reson. Spectrosc. 2001, 39, 191–267. [Google Scholar] [CrossRef]
- Richert, R. On the dielectric susceptibility spectra of supercooled o-terphenyl. J. Chem. Phys. 2005, 123, 154502. [Google Scholar] [CrossRef]
- Ruocco, G.; Sciortino, F.; Zamponi, F.; De Michele, C.; Scopigno, T. Landscapes and fragilities. J. Chem. Phys. 2004, 120, 10666. [Google Scholar] [CrossRef] [Green Version]
- McKenna, G.B. Looking at the glass transition: Challenges of extreme time scales and other interesting problems. Rubber Chem. Technol. 2020, 93, 79–120. [Google Scholar] [CrossRef]
- Wang, L.M. Enthalpy relaxation upon glass transition and kinetic fragility of molecular liquids. J. Phys. Chem. 2009, 113, 5168–5171. [Google Scholar] [CrossRef]
- Cohen, M.H.; Turnbull, D. Molecular transport in liquids and glasses. J. Phys. Chem. 1959, 31, 1164–1169. [Google Scholar] [CrossRef]
- Cohen, M.H.; Grest, G.S. Liquid-glass transition, a free-volume approach. Phys. Rev. B 1979, 20, 1077–1098. [Google Scholar] [CrossRef]
- Glarum, S.H. Dielectric relaxation of isoamyl bromide. J. Phys. Chem. 1960, 33, 639–643. [Google Scholar] [CrossRef]
- Bendler, J.T.; Fontanella, J.J.; Shlesinger, M.F.; Wintersgill, M.C. The defect diffusion model, glass transition and the properties of glass-forming liquids. In AIP Conference Proceedings; Tokoyama, M., Oppenheim, I., Eds.; CP982, Complex Systems, 5th International Workshop on Complex Systems; American Institute of Physics: College Park, MD, USA, 2008. [Google Scholar]
- Dyre, J.C.; Olsen, N.B.; Christensen, T. Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids. Phys. Rev. B 1996, 53, 2171–2174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyre, J.C. Colloquium: The glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 2006, 78, 953–972. [Google Scholar] [CrossRef] [Green Version]
- Adam, G.; Gibbs, J.H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Phys. Chem. 1965, 43, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Yamamuro, O.; Tsukushi, I.; Lindqvist, A.; Takahara, S.; Ishikawa, M.; Matsuo, T. Calorimetric study of glassy and liquid toluene and ethylbenzene: Thermodynamic approach to spatial heterogeneity in glass-forming molecular liquids. J. Phys. Chem. B 1998, 102, 1605–1609. [Google Scholar] [CrossRef]
- Dyre, J.C. A brief critique of the Adam-Gibbs entropy model. J. Non-Cryst. Solids 2009, 355, 624–627. [Google Scholar] [CrossRef] [Green Version]
- Götze, W. Recent tests of the mode-coupling theory for glassy dynamics. J. Phys. Condens. Matter 1999, 11, A1–A45. [Google Scholar] [CrossRef]
- Das, S.P. Mode-coupling theory and the glass transition in supercooled liquids. Rev. Mod. Phys. 2004, 76, 785–851. [Google Scholar] [CrossRef] [Green Version]
- Lubchenko, V.; Wolynes, P.G. Theory of structural glasses and supercooled liquids. Annu. Rev. Phys. Chem. 2007, 58, 235–266. [Google Scholar] [CrossRef]
- Chamberlin, R.V. Mean-field cluster model for the critical behaviour of ferromagnets. Nature 2000, 408, 337–339. [Google Scholar] [CrossRef]
- Moore, M.A. Interface free energies in p-spin glass models. Phys. Rev. Lett. 2006, 96, 137202. [Google Scholar] [CrossRef] [Green Version]
- Yeo, J.; Moore, M.A. Possible instability of one-step replica symmetry breaking in p-spin Ising models outside mean-field theory. Phys. Rev. E 2020, 101, 032127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kivelson, D.; Kivelson, S.A.; Zhao, X.; Nussinov, Z.; Tarjus, G. A thermodynamic theory of supercooled liquids. Phys. A 1995, 219, 27–38. [Google Scholar] [CrossRef]
- Tarjus, G.; Kivelson, S.A.; Nussinov, Z.; Viot, P. The frustration-based approach of supercooled liquids and the glass transition: A review and critical assessment. J. Phys. Condens. Matter 2005, 17, R1143–R1182. [Google Scholar] [CrossRef]
- Tarjus, G. An overview of the theories of the glass transition. In Dynamical Heterogeneities in Glasses, Colloids, and Granular Media; Berthier, L., Biroli, G., Bouchaud, J.P., Cipelleti, L., van Saarloos, W., Eds.; Oxford University Press: Oxford, UK, 2011; Chapter 2; pp. 39–67. [Google Scholar]
χ2 (×100) | VFT2 Fit Parameters | “Molecules” | Temperatures (K) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Liquid | VFT2 | VFT | MYEGA | C | n | n/C | |||||
glycerol | 0.18 | 7.1 | 17 | 0.1069 | −17.745 | 18 | 170 | 104.1 | 191 | 129.6 | 135 |
PG | 0.24 | 5.3 | 14 | 0.1035 | −17.242 | 90.61 | 170 | 113.5 | 127 | ||
PVAc | 8.6 | 26 | 28 | 0.580 | −11.72 | 420 | 730 | 239.1 | 308 | 257.2 | 247 |
PC | 50 | 56 | 19 | 1.636 | −11.24 | 150.4 | 164 | 144.5 | 127 | ||
sorbitol | 33 | 31 | 41 | 0.45 | −13.3 | 77 | 170 | 193.6 | 267 | 233.4 | 226 |
OTP | 6.9 | 6.8 | 7.2 | 0.072 | −30.6 | 35 | 480 | 151.8 | 283 | 175.6 | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamberlin, R.V. An Ising Model for Supercooled Liquids and the Glass Transition. Symmetry 2022, 14, 2211. https://doi.org/10.3390/sym14102211
Chamberlin RV. An Ising Model for Supercooled Liquids and the Glass Transition. Symmetry. 2022; 14(10):2211. https://doi.org/10.3390/sym14102211
Chicago/Turabian StyleChamberlin, Ralph V. 2022. "An Ising Model for Supercooled Liquids and the Glass Transition" Symmetry 14, no. 10: 2211. https://doi.org/10.3390/sym14102211
APA StyleChamberlin, R. V. (2022). An Ising Model for Supercooled Liquids and the Glass Transition. Symmetry, 14(10), 2211. https://doi.org/10.3390/sym14102211