On New Hamiltonian Structures of Two Integrable Couplings
Abstract
:1. Introduction
2. Basic Notions
3. New Hamiltonian Structures of Two Integrable Couplings
3.1. The AKNS
3.2. The KN
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Derivation of (36)
Appendix B. Property of (38)
Appendix C. Theorem 2.8 in [4]
Appendix D. The Implectic–Symplectic Factorization (42)
References
- Magri, F. A simple model of the integrable Hamiltonian equation. J. Math. Phys. 1978, 19, 1156–1162. [Google Scholar] [CrossRef]
- Gel’fand, I.M.; Dorfman, I.Y. Hamiltonian operators and algebraic structures related to them. Funct. Anal. Appl. 1979, 13, 248–262. [Google Scholar] [CrossRef]
- Fuchssteiner, B.; Fokas, A.S. Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica 4D 1981, 4, 47–66. [Google Scholar] [CrossRef]
- Ma, W.X. Integrable couplings of soliton equations by perturbations I. A general theory and application to the KdV hierarchy. Meth. Appl. Anal. 2000, 7, 21–55. [Google Scholar] [CrossRef] [Green Version]
- Lakshmanan, M.; Tamizhmani, K.M. Lie-Bäcklund symmetries of certain nonlinear evolution equations under perturbation around solutions. J. Math. Phys. 1985, 26, 1189–1200. [Google Scholar] [CrossRef]
- Fuchssteiner, B. Coupling of completely integrable systems: The perturbation bundle. In Applications of Analytic and Geometric Methods to Nonlinear Differential Equations; Clarkson, P.A., Ed.; Kluwer: Dordrecht, The Netherlands, 1993; pp. 125–138. [Google Scholar]
- Ma, W.X.; Fuchssteiner, B. The bi-Hamiltonian structure of the perturbation equations of the KdV hierarchy. Phys. Lett. A 1996, 213, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.X.; Fuchssteiner, B. Integrable theory of the perturbation equations. Chaos Solitons Fractals 1996, 7, 1227–1250. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.F.; Zhang, H.Q. A direct method for integrable couplings of TD hierarchy. J. Math. Phys. 2002, 43, 466–472. [Google Scholar] [CrossRef]
- Ma, W.X. Enlarging spectral problems to construct integrable couplings of soliton equations. Phys. Lett. A 2003, 316, 72–76. [Google Scholar] [CrossRef]
- Guo, F.G.; Zhang, Y. A new loop algebra and a corresponding integrable hierarchy, as well as its integrable coupling. J. Math. Phys. 2003, 44, 5793. [Google Scholar] [CrossRef]
- Zhang, Y.F. A generalized multi-component Glachette-Johnson (GJ) hierarchy and its integrable coupling system. Chaos Solitons Fractals 2004, 21, 305–310. [Google Scholar] [CrossRef]
- Ma, W.X. Integrable couplings of vector AKNS soliton equations. J. Math. Phys. 2005, 46, 033507. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Fan, E.G. Hamiltonian structure of the integrable coupling of the Jaulent-CMiodek hierarchy. Phys. Lett. A 2006, 348, 180–186. [Google Scholar] [CrossRef]
- Guo, F.K.; Zhang, Y.F. The integrable coupling of the AKNS hierarchy and its Hamiltonian structure. Chaos Solitons Fractals 2007, 32, 1898–1902. [Google Scholar] [CrossRef]
- Yao, Y.Q.; Ji, J.; Liu, Y.Q.; Chen, D.Y. Integrable coupling of the Ablowitz-Ladik hierarchy and its Hamiltonian structure. Nonlinear Anal. 2008, 69, 557–568. [Google Scholar] [CrossRef]
- Xu, X.X. Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, their hierarchies and bi-Hamiltonian structures. J. Phys. A 2009, 42, 395201. [Google Scholar] [CrossRef]
- Xu, X.X. An integrable coupling hierarchy of the MKdV integrable systems, its Hamiltonian structure and corresponding nonisospectral integrable hierarchy. Appl. Math. Comput. 2010, 216, 344–353. [Google Scholar]
- Ma, W.X. Variational identities and Hamiltonian structures. In Proceedings of the 1st International Workshop on Nonlinear and Modern Mathematical Physics, AIPCP 1212, Beijing, China, 15–21 July 2009; pp. 1–27. [Google Scholar]
- McAnally, M.; Ma, W.X. Two integrable couplings of a generalized D-Kaup-Newell hierarchy and their Hamiltonian and bi-Hamiltonian structures. Nonlinear Anal. 2020, 191, 111629. [Google Scholar] [CrossRef]
- Zhang, D.J.; Chen, D.Y. Hamiltonian structure of discrete soliton systems. J. Phys. A Gen. Math. 2002, 35, 7225–7241. [Google Scholar] [CrossRef]
- Fuchssteiner, B. Hamiltonian structure and integrability. Math. Sci. Eng. 1991, 185, 211–256. [Google Scholar]
- Fu, W.; Huang, L.; Tamizhmani, K.M.; Zhang, D.J. Integrability properties of the differential-difference Kadomtsev-Petviashvili hierarchy and continuum limits. Nonlinearity 2013, 26, 3197–3229. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. Nonlinear evolution equations of physical significance. Phys. Rev. Lett. 1973, 31, 125–127. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Shabat, A.B. Exact theory of two-dimensional self-focusing and one dimensional self-modulation of waves in nolinear media. Sov. Phys. JETP 1972, 34, 62–69. [Google Scholar]
- Ablowitz, M.J.; Segur, H. Solitons and the Inverse Scattering Transform; SIAM: Philadelphia, PA, USA, 1981. [Google Scholar]
- Chen, D.Y. Introduce to Soliton Theory; Science Press: Beijing, China, 2006. [Google Scholar]
- Tian, C. Symmetry. In Soliton Theory and Its Applications; Gu, C.H., Ed.; Springer: Berlin, Germany, 1995; pp. 192–229. [Google Scholar]
- Kaup, D.J.; Newell, A.C. On the Coleman correspondence and the solution of the massive Thirring model. Lett. AL Nuovo Cimento 1977, 20, 325–331. [Google Scholar] [CrossRef]
- Kaup, D.J.; Newell, A.C. An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 1978, 19, 798–801. [Google Scholar] [CrossRef]
- Mikhailov, A.V. Integrability of the two-dimensional Thirring model. JETP Lett. 1976, 23, 320–323. [Google Scholar]
- Liu, S.Z.; Wang, J.; Zhang, D.J. The Fokas-Lenells equations: Bilinear approach. Stud. Appl. Math. 2022, 148, 651–688. [Google Scholar] [CrossRef]
- Zhang, M.S. Integrable Couplings of the Kaup-Newell Soliton Hierarchy, Graduate Theses and Dissertations. 2012. Available online: https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=5463&context=etd (accessed on 23 July 2022).
- Ma, W.X.; Zhang, Y.J. Darboux transformations of integrable couplings and applications. Rev. Math. Phys. 2018, 30, 1850003. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Chen, S.T.; Han, J.W.; Ma, W.X. N-fold Darboux transformation for integrable couplings of AKNS equations. Commun. Theor. Phys. 2018, 69, 367–374. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, J.; Zhang, D.-j. On New Hamiltonian Structures of Two Integrable Couplings. Symmetry 2022, 14, 2259. https://doi.org/10.3390/sym14112259
Liu Y, Liu J, Zhang D-j. On New Hamiltonian Structures of Two Integrable Couplings. Symmetry. 2022; 14(11):2259. https://doi.org/10.3390/sym14112259
Chicago/Turabian StyleLiu, Yu, Jin Liu, and Da-jun Zhang. 2022. "On New Hamiltonian Structures of Two Integrable Couplings" Symmetry 14, no. 11: 2259. https://doi.org/10.3390/sym14112259
APA StyleLiu, Y., Liu, J., & Zhang, D. -j. (2022). On New Hamiltonian Structures of Two Integrable Couplings. Symmetry, 14(11), 2259. https://doi.org/10.3390/sym14112259