A Flexible Meta-Curtain for Simultaneous Soundproofing and Ventilation
Abstract
:1. Introduction
2. Design of Flexible Meta-Curtain
2.1. Geometry Design
2.2. Band Structure and Eigenstate Analysis
2.3. Sound Transmission Loss Analysis
3. Fabrication and Experimental Measurement of Flexible Meta-Curtain
3.1. Fabricated Unit Cell and Measurement of Sound Transmission Loss
3.2. Fabricated Full-Size Meta-Curtain and Measurement of Sound Transmission Loss
4. Tunability on Geometrical Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, J.; Brocklesby, M.W. Feasibility of applying micro-perforated absorbers in acoustic window systems. Appl. Acoust. 2005, 66, 669–689. [Google Scholar] [CrossRef]
- Ma, G.; Sheng, P. Acoustic metamaterials: From local resonances to broad horizons. Sci. Adv. 2016, 2, e1501595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assouar, B.; Liang, B.; Wu, Y.; Li, Y.; Cheng, J.C.; Jing, Y. Acoustic metasurfaces. Nat. Rev. Mater. 2018, 3, 460–472. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Xia, C.; Fang, N. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 2011, 106, 024301. [Google Scholar] [CrossRef]
- Sanchis, L.; García-Chocano, V.M.; Llopis-Pontiveros, R.; Climente, A.; Martínez-Pastor, J.; Cervera, F.; Sánchez-Dehesa, J. Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. Phys. Rev. Lett. 2013, 110, 124301. [Google Scholar] [CrossRef]
- Zigoneanu, L.; Popa, B.I.; Cummer, S.A. Three-dimensional broadband omnidirectional acoustic ground cloak. Nat. Mater. 2014, 13, 352–355. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xiao, M.; Cheng, Y.; Lu, M.H.; Christensen, J. Topological sound. Commun. Phys. 2018, 1, 97. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.; Xiao, M.; Chan, C.T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 2019, 1, 281–294. [Google Scholar] [CrossRef]
- Xue, H.; Yang, Y.; Zhang, B. Topological acoustics. Nat. Rev. Mater. 2022, 1, 17. [Google Scholar] [CrossRef]
- Qu, S.; Gao, N.; Tinel, A.; Morvan, B.; Groby, P.; Sheng, P.; Bay, W.; Kong, H. Underwater metamaterial absorber with impedance-matched composite. Sci. Adv. 2022, 8, eabm4206. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, S.H. Air transparent soundproof window. AIP Adv. 2014, 4, 117123. [Google Scholar] [CrossRef]
- Kurdi, M.H.; Duncan, G.S.; Nudehi, S.S. Optimal design of a helmholtz resonator with a flexible end plate. J. Vib. Acoust. 2014, 136, 031004. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhou, C.; Yuan, B.G.; Wu, D.J.; Wei, Q.; Liu, X.J. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. Nat. Mater. 2015, 14, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, N.; Romero-García, V.; Pagneux, V.; Groby, J.P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Phys. Rev. B 2017, 95, 014205. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.W.; Kim, J.E.; Lee, J.W. Acoustic metamaterial panel for both fluid passage and broadband soundproofing in the audible frequency range. Appl. Phys. Lett. 2018, 112, 041903. [Google Scholar] [CrossRef]
- Wu, X.; Au-Yeung, K.Y.; Li, X.; Roberts, R.C.; Tian, J.; Hu, C.; Huang, Y.; Wang, S.; Yang, Z.; Wen, W. High-efficiency ventilated metamaterial absorber at low frequency. Appl. Phys. Lett. 2018, 112, 103505. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Lee, J.S.; Lee, H.R.; Kang, Y.J.; Kim, Y.Y. Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission. Appl. Phys. Lett. 2018, 112, 091901. [Google Scholar] [CrossRef]
- Li, L.J.; Zheng, B.; Zhong, L.M.; Yang, J.; Liang, B.; Cheng, J.C. Broadband compact acoustic absorber with high-efficiency ventilation performance. Appl. Phys. Lett. 2018, 113, 103501. [Google Scholar] [CrossRef]
- Lee, T.; Nomura, T.; Dede, E.M.; Iizuka, H. Ultrasparse Acoustic Absorbers Enabling Fluid Flow and Visible-Light Controls. Phys. Rev. Appl. 2019, 11, 024022. [Google Scholar] [CrossRef]
- Lee, T.; Nomura, T.; Iizuka, H. Damped resonance for broadband acoustic absorption in one-port and two-port systems. Sci. Rep. 2019, 9, 13077. [Google Scholar] [CrossRef]
- Su, X.; Banerjee, D. Extraordinary sound isolation using an ultrasparse array of degenerate anisotropic scatterers. Phys. Rev. Appl. 2020, 13, 064047. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Ih, J.-G. Wideband reduction of in-duct noise using acoustic metamaterial with serially connected resonators made. Appl. Phys. Lett. 2020, 116, 251904. [Google Scholar] [CrossRef]
- Nguyen, H.; Wu, Q.; Xu, X.; Chen, H.; Tracy, S.; Huang, G. Broadband acoustic silencer with ventilation based on slit-type Helmholtz resonators. Appl. Phys. Lett. 2020, 117, 134103. [Google Scholar] [CrossRef]
- Kumar, S.; Xiang, T.B.; Lee, H.P. Ventilated acoustic metamaterial window panels for simultaneous noise shielding and air circulation. Appl. Acoust. 2020, 159, 107088. [Google Scholar] [CrossRef]
- Melnikov, A.; Maeder, M.; Friedrich, N.; Pozhanka, Y.; Wollmann, A.; Scheffler, M.; Oberst, S.; Powell, D.; Marburg, S. Acoustic metamaterial capsule for reduction of stage machinery noise. J. Acoust. Soc. Am. 2020, 147, 1491–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, R.; Mao, D.; Wang, X.; Li, Y. Ultrabroadband Acoustic Ventilation Barriers via Hybrid-Functional Metasurfaces. Phys. Rev. Appl. 2021, 15, 024044. [Google Scholar] [CrossRef]
- Liu, C.; Shi, J.; Zhao, W.; Zhou, X.; Ma, C.; Peng, R.; Wang, M.; Hang, Z.H.; Liu, X.; Christensen, J.; et al. Three-Dimensional Soundproof Acoustic Metacage. Phys. Rev. Lett. 2021, 127, 084301. [Google Scholar] [CrossRef]
- Fusaro, G.; Yu, X.; Lu, Z.; Cui, F.; Kang, J. A metawindow with optimised acoustic and ventilation performance. Appl. Sci. 2021, 11, 3168. [Google Scholar] [CrossRef]
- Shen, L.; Zhu, Y.; Mao, F.; Gao, S.; Su, Z.; Luo, Z.; Zhang, H.; Assouar, B. Broadband Low-Frequency Acoustic Metamuffler. Phys. Rev. Appl. 2021, 16, 064057. [Google Scholar] [CrossRef]
- Xiang, X.; Tian, H.; Huang, Y.; Wu, X.; Wen, W. Manually tunable ventilated metamaterial absorbers. Appl. Phys. Lett. 2021, 118, 053504. [Google Scholar] [CrossRef]
- Liu, C.; Wang, H.; Liang, B.; Cheng, J.; Lai, Y. Low-frequency and broadband muffler via cascaded labyrinthine metasurfaces. Appl. Phys. Lett. 2022, 120, 231702. [Google Scholar] [CrossRef]
- Ma, G.; Yang, M.; Yang, Z.; Sheng, P. Low-frequency narrow-band acoustic filter with large orifice. Appl. Phys. Lett. 2013, 103, 011903. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.L.; Zhu, Y.F.; Liang, B.; Yang, J.; Yang, J.; Cheng, J.C. Omnidirectional ventilated acoustic barrier. Appl. Phys. Lett. 2017, 111, 203502. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Luo, X.; Yang, B.; Huang, Z. Ultrathin and durable open metamaterials for simultaneous ventilation and sound reduction. Appl. Phys. Lett. 2019, 115, 171902. [Google Scholar] [CrossRef]
- Ghaffarivardavagh, R.; Nikolajczyk, J.; Anderson, S.; Zhang, X. Ultra-open acoustic metamaterial silencer based on Fano-like interference. Phys. Rev. B 2019, 99, 024302. [Google Scholar] [CrossRef]
- Sun, M.; Fang, X.; Mao, D.; Wang, X.; Li, Y. Broadband Acoustic Ventilation Barriers. Phys. Rev. Appl. 2020, 13, 044028. [Google Scholar] [CrossRef]
- Shi, J.; Liu, C.; Liu, X.; Lai, Y. Ventilative meta-window with broadband low-frequency acoustic insulation. J. Appl. Phys. 2021, 129, 094901. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Wu, Q.; Chen, H.; Chen, J.J.; Yu, Y.K.; Tracy, S.; Huang, G.L. A Fano-based acoustic metamaterial for ultra-broadband sound barriers. Proc. R. Soc. A 2021, 477, 20210024. [Google Scholar] [CrossRef]
- Xu, Z.X.; Zheng, B.; Yang, J.; Liang, B.; Cheng, J.C. Machine-Learning-Assisted Acoustic Consecutive Fano Resonances: Application to a Tunable Broadband Low-Frequency Metasilencer. Phys. Rev. Appl. 2021, 16, 044020. [Google Scholar] [CrossRef]
- García-Chocano, V.M.; Cabrera, S.; Sánchez-Dehesa, J. Broadband sound absorption by lattices of microperforated cylindrical shells. Appl. Phys. Lett. 2012, 101, 184101. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, H.; Ding, Y.; Yang, J.; Liang, B.; Cheng, J. Topology-Optimized Omnidirectional Broadband Acoustic Ventilation Barrier. Phys. Rev. Appl. 2020, 10, 054016. [Google Scholar] [CrossRef]
- Zhang, H.L.; Zhu, Y.F.; Liang, B.; Yang, J.; Yang, J.; Cheng, J.C. Sound Insulation in a Hollow Pipe with Subwavelength Thickness. Sci. Rep. 2017, 7, 44106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, C.; Xie, Y.; Li, J.; Cummer, S.A.; Jing, Y. Acoustic metacages for sound shielding with steady air flow. J. Appl. Phys. 2018, 123, 124501. [Google Scholar] [CrossRef]
- Ge, Y.; Sun, H.X.; Yuan, S.Q.; Lai, Y. Switchable omnidirectional acoustic insulation through open window structures with ultrathin metasurfaces. Phys. Rev. Mater. 2019, 3, 065203. [Google Scholar] [CrossRef]
- Kumar, S.; Lee, H.P. Recent advances in acoustic metamaterials for simultaneous sound attenuation and air ventilation performances. Crystals 2020, 10, 686. [Google Scholar] [CrossRef]
- Dong, R.; Sun, M.; Mo, F.; Mao, D.; Wang, X.; Li, Y. Recent advances in acoustic ventilation barriers. J. Phys. D. Appl. Phys. 2021, 54, 403002. [Google Scholar] [CrossRef]
- Lee, H.P.; Kumar, S. Perspectives on the Sonic Environment and Noise Mitigations during the COVID-19 Pandemic Era. Acoustics 2021, 3, 493–506. [Google Scholar] [CrossRef]
- Fang, N.; Xi, D.; Xu, J.; Ambati, M.; Srituravanich, W.; Sun, C.; Zhang, X. Ultrasonic metamaterials with negative modulus. Nat. Mater. 2006, 5, 452–456. [Google Scholar] [CrossRef]
- Roger, W. Pryor Multiphysics Modeling Using COMSOL: A First Principles Approach; Jones & Bartlett Learning: Sudbury, MA, Canada, 2011. [Google Scholar]
- Indaleeb, M.M.; Banerjee, S.; Ahmed, H.; Saadatzi, M.; Ahmed, R. Deaf band based engineered Dirac cone in a periodic acoustic metamaterial: A numerical and experimental study. Phys. Rev. B 2019, 99, 024311. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Liu, C.; Shi, J.; Shen, C.; Liu, X.; Lai, Y. A Flexible Meta-Curtain for Simultaneous Soundproofing and Ventilation. Symmetry 2022, 14, 2348. https://doi.org/10.3390/sym14112348
Cui X, Liu C, Shi J, Shen C, Liu X, Lai Y. A Flexible Meta-Curtain for Simultaneous Soundproofing and Ventilation. Symmetry. 2022; 14(11):2348. https://doi.org/10.3390/sym14112348
Chicago/Turabian StyleCui, Xiaobin, Chenkai Liu, Jinjie Shi, Changhui Shen, Xiaozhou Liu, and Yun Lai. 2022. "A Flexible Meta-Curtain for Simultaneous Soundproofing and Ventilation" Symmetry 14, no. 11: 2348. https://doi.org/10.3390/sym14112348
APA StyleCui, X., Liu, C., Shi, J., Shen, C., Liu, X., & Lai, Y. (2022). A Flexible Meta-Curtain for Simultaneous Soundproofing and Ventilation. Symmetry, 14(11), 2348. https://doi.org/10.3390/sym14112348