Design, Synthesis, and In Vitro Antiproliferative Screening of New Hydrazone Derivatives Containing cis-(4-Chlorostyryl) Amide Moiety
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biology
2.2.1. In Vitro Cytotoxic Activity against MCF-7 Breast Cancer Cell Line
2.2.2. In Vitro VEGFR-2 Inhibition Assay
2.2.3. Cell Cycle Analysis
2.2.4. Apoptosis Staining Assay
2.2.5. Caspase 9 Assay
3. Conclusions
4. Experimental
4.1. Chemistry
4.1.1. General Procedure for the Synthesis of N-((Z)-3-((E)-2-Arylidenehydrazinyl)-1-(4-chlorophenyl)-3-oxoprop-1-en-2-yl)-3,4-dimethoxybenzamides 3a–n
N-((Z)-3-((E)-2-Benzylidenehydrazinyl)-1-(4-chlorophenyl)-3-oxoprop-1-en-2-yl)-3,4-dimethoxybenzamide (3a)
N-((Z)-3-((E)-2-(4-Chlorobenzylidene)hydrazinyl)-1-(4-chlorophenyl)-3-oxoprop-1-en-2-yl)-3,4-dimethoxybenzamide (3b)
N-((Z)-1-(4-Chlorophenyl)-3-((E)-2-(2-nitrobenzylidene)hydrazinyl)-3-oxoprop-1-en-2-yl)-3,4-dimethoxybenzamide (3c)
N-((Z)-1-(4-Chlorophenyl)-3-((E)-2-(4-nitrobenzylidene)hydrazinyl)-3-oxoprop-1-en-2-yl)-3,4-dimethoxybenzamide (3d)
N-((Z)-1-(4-Chlorophenyl)-3-((E)-2-(2-hydroxybenzylidene)hydrazinyl)-3-oxoprop-1-en-2-yl)-3,4-dimethoxybenzamide (3e)
N-((Z)-1-(4-Chlorophenyl)-3-((E)-2-(4-hydroxybenzylidene)hydrazinyl)-3-oxoprop-1-en-2-yl)-3,4-dimethoxybenzamide (3f)
N-((Z)-1-(4-Chlorophenyl)-3-((E)-2-(4-methylbenzylidene)hydrazinyl)-3-oxoprop-1-en-2-yl)-3,4-dimethoxybenzamide (3g)
N-((Z)-1-(4-Chlorophenyl)-3-((E)-2-(4-methoxybenzylidene)hydrazinyl)-3-oxoprop-1-en-2-yl)-3,4-dimethoxybenzamide (3h)
N-((Z)-1-(4-Chlorophenyl)-3-((E)-2-(3,5-dibromo-4-hydroxybenzylidene)hydrazinyl)-3-oxoprop-1-en-2-yl)-3,4-dimethoxybenzamide (3i)
N-((Z)-1-(4-Chlorophenyl)-3-((E)-2-(4-(dimethylamino)benzylidene)hydrazinyl)-3-oxoprop-1-en-2-yl)-3,4-dimethoxybenzamide (3j)
N-((Z)-1-(4-Chlorophenyl)-3-((E)-2-(2-hydroxy-3-methoxybenzylidene)hydrazinyl)-3-oxoprop-1-en-2-yl)-3,4-dimethoxybenzamide (3k)
N-((Z)-1-(4-Chlorophenyl)-3-((E)-2-(4-hydroxy-3-methoxybenzylidene)hydrazinyl)-3-oxoprop-1-en-2-yl)-3,4-dimethoxybenzamide (3l)
N-((Z)-1-(4-Chlorophenyl)-3-((E)-2-(3,5-dimethoxybenzylidene)hydrazinyl)-3-oxoprop-1-en-2-yl)-3,4-dimethoxybenzamide (3m)
N-((Z)-1-(4-Chlorophenyl)-3-oxo-3-((E)-2-(3,4,5-trimethoxybenzylidene)hydrazinyl)prop-1-en-2-yl)-3,4-dimethoxybenzamide (3n)
4.1.2. General Procedure for the Synthesis of N-((Z)-1-(4-Chlorophenyl)-3-oxo-3-((E)-2-((E)-3-phenylallylidene)hydrazinyl)prop-1-en-2-yl)-3,4-dimethoxybenzamide (4)
4.2. Biological Study
4.2.1. MTT Assay against MCF-7 Breast Cancer Cell Line
4.2.2. VEGFR-2 Inhibition Assay
4.2.3. Cell Cycle Analysis
4.2.4. Annexin V/FITC Staining Assay
4.2.5. Caspase 9 Assay
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Hulvat, M.C. Cancer incidence and trends. Surg. Clin. 2020, 100, 469–481. [Google Scholar] [CrossRef]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y. Heart disease and stroke statistics—2022 update: A report from the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Naing, A.; Hajjar, J.; Gulley, J.L.; Atkins, M.B.; Ciliberto, G.; Meric-Bernstam, F.; Hwu, P. Strategies for improving the management of immune-related adverse events. J. Immunother. Cancer 2020, 8, e001754. [Google Scholar] [CrossRef]
- Hussain, Y.; Islam, L.; Khan, H.; Filosa, R.; Aschner, M.; Javed, S. Curcumin–cisplatin chemotherapy: A novel strategy in promoting chemotherapy efficacy and reducing side effects. Phytother. Res. 2021, 35, 6514–6529. [Google Scholar] [CrossRef] [PubMed]
- Huelse, J.M.; Fridlyand, D.M.; Earp, S.; DeRyckere, D.; Graham, D.K. MERTK in cancer therapy: Targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol.Ther. 2020, 213, 107577. [Google Scholar] [CrossRef]
- Kongkrongtong, T.; Sumigama, Y.; Nagamune, T.; Kawahara, M. Reprogramming signal transduction through a designer receptor tyrosine kinase. Commun. Biol. 2021, 4, 752. [Google Scholar] [CrossRef]
- Roskoski, R. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol. Res. 2019, 139, 395–411. [Google Scholar] [CrossRef]
- Saraon, P.; Pathmanathan, S.; Snider, J.; Lyakisheva, A.; Wong, V.; Stagljar, I. Receptor tyrosine kinases and cancer: Oncogenic mechanisms and therapeutic approaches. Oncogene 2021, 40, 4079–4093. [Google Scholar] [CrossRef]
- Tripathi, S.K.; Pandey, K.; Rengasamy, K.R.R.; Biswal, B.K. Recent updates on the resistance mechanisms to epidermal growth factor receptor tyrosine kinase inhibitors and resistance reversion strategies in lung cancer. Med. Res. Rev. 2020, 40, 2132–2176. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, J.; Wang, X.; Zhou, X.; Tang, J.; Jie, X.; Yang, X.; Rao, X.; Xu, Y.; Xing, B.; et al. Targeting ADRB2 enhances sensitivity of non-small cell lung cancer to VEGFR2 tyrosine kinase inhibitors. Cell Death Discov. 2022, 8, 36. [Google Scholar] [CrossRef]
- Modi, S.J.; Kulkarni, V.M. Vascular Endothelial Growth Factor Receptor (VEGFR-2)/KDR Inhibitors: Medicinal Chemistry Perspective. Med. Drug Discov. 2019, 2, 100009. [Google Scholar] [CrossRef]
- Wang, X.; Bove, A.M.; Simone, G.; Ma, B. Molecular bases of VEGFR-2-mediated physiological function and pathological role. Front. Cell Dev. Biol. 2020, 8, 599281. [Google Scholar] [CrossRef]
- Mariotti, V.; Fiorotto, R.; Cadamuro, M.; Fabris, L.; Strazzabosco, M. New insights on the role of vascular endothelial growth factor in biliary pathophysiology. JHEP Rep. 2021, 3, 100251. [Google Scholar] [CrossRef]
- Farghaly, T.A.; Al-Hasani, W.A.; Abdulwahab, H.G. An updated patent review of VEGFR-2 inhibitors (2017-present). Expert Opin. Ther. Pat. 2021, 31, 989–1007. [Google Scholar] [CrossRef] [PubMed]
- Al-Salem, H.S.; Arifuzzaman, M.; Issa, I.S.; Rahman, A.F.M.M. Isatin-Hydrazones with Multiple Receptor Tyrosine Kinases (RTKs) Inhibitory Activity and In-Silico Binding Mechanism. Appl. Sci. 2021, 11, 3746. [Google Scholar] [CrossRef]
- Mali, S.N.; Thorat, B.R.; Gupta, D.R.; Pandey, A. Mini-Review of the Importance of Hydrazides and Their Derivatives—Synthesis and Biological Activity. Eng. Proc. 2021, 11, 21. [Google Scholar]
- Abdelrhman, E.M.; El-Shetary, B.A.; Shebl, M.; Adly, O.M.I. Coordinating behavior of hydrazone ligand bearing chromone moiety towards Cu(II) ions: Synthesis, spectral, density functional theory (DFT) calculations, antitumor, and docking studies. Appl. Organomet. Chem. 2021, 35, e6183. [Google Scholar] [CrossRef]
- Guimaraes, D.G.; de Assis Gonsalves, A.; Rolim, L.A.; Araújo, E.C.; dos Anjos, S.; Laysna, V.; Silva, M.F.; de Cássia Evangelista de Oliveira, F.; da Costa, M.P.; Pessoa, C. Naphthoquinone-based hydrazone hybrids: Synthesis and potent activity against cancer cell lines. Med. Chem. 2021, 17, 945–955. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Carneiro Brum, J.; França, T.C.; LaPlante, S.R.; Villar, J.D.F. Synthesis and biological activity of hydrazones and derivatives: A review. Mini Rev. Med. Chem. 2020, 20, 342–368. [Google Scholar] [CrossRef]
- Baldisserotto, A.; Demurtas, M.; Lampronti, I.; Tacchini, M.; Moi, D.; Balboni, G.; Vertuani, S.; Manfredini, S.; Onnis, V. In-Vitro Evaluation of Antioxidant, Antiproliferative and Photo-Protective Activities of Benzimidazolehydrazone Derivatives. Pharmaceuticals 2020, 13, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khattab, T.A. From chromic switchable hydrazones to smart materials. Mater. Chem. Phys. 2020, 254, 123456. [Google Scholar] [CrossRef]
- Liu, B.; Liu, H.; Zhang, H.; Di, Q.; Zhang, H. Crystal Engineering of a Hydrazone Molecule toward High Elasticity and Bright Luminescence. J. Phys. Chem. Lett. 2020, 11, 9178–9183. [Google Scholar] [CrossRef] [PubMed]
- Han, M.İ.; Atalay, P.; Tunç, C.Ü.; Ünal, G.; Dayan, S.; Aydın, Ö.; Küçükgüzel, Ş.G. Design and synthesis of novel (S)-Naproxen hydrazide-hydrazones as potent VEGFR-2 inhibitors and their evaluation in vitro/in vivo breast cancer models. Bioorg. Med. Chem. 2021, 37, 116097. [Google Scholar] [CrossRef]
- Hantgan, R.R.; Stahle, M.C. Integrin Priming Dynamics: Mechanisms of Integrin Antagonist-Promoted αIIbβ3:PAC-1 Molecular Recognition. Biochemistry 2009, 48, 8355–8365. [Google Scholar] [CrossRef] [PubMed]
- Şenkardeş, S.; İhsan Han, M.; Gürboğa, M.; Özakpinar, Ö.B.; Güniz Küçükgüzel, Ş. Synthesis and anticancer activity of novel hydrazone linkage-based aryl sulfonate derivatives as apoptosis inducers. Med. Chem. Res. 2022, 31, 368–379. [Google Scholar] [CrossRef]
- El-Adl, K.; Abdel-Rahman, A.A.H.; Omar, A.M.; Alswah, M.; Saleh, N.M. Design, synthesis, anticancer, and docking of some S- and/or N-heterocyclic derivatives as VEGFR-2 inhibitors. Arch. Pharm. 2022, 355, 2100237. [Google Scholar] [CrossRef]
- Takao, K.; Yahagi, H.; Uesawa, Y.; Sugita, Y. 3-(E)-Styryl-2H-chromene derivatives as potent and selective monoamine oxidase B inhibitors. Bioorg. Chem. 2018, 77, 436–442. [Google Scholar] [CrossRef]
- Wei, X.-W.; Yuan, J.-M.; Huang, W.-Y.; Chen, N.-Y.; Li, X.-J.; Pan, C.-X.; Mo, D.-L.; Su, G.-F. 2-Styryl-4-aminoquinazoline derivatives as potent DNA-cleavage, p53-activation and in vivo effective anticancer agents. Eur. J. Med. Chem. 2020, 186, 111851. [Google Scholar] [CrossRef]
- Abe, H.; Okazawa, M.; Oyama, T.; Yamazaki, H.; Yoshimori, A.; Kamiya, T.; Tsukimoto, M.; Takao, K.; Sugita, Y.; Sakagami, H.; et al. A Unique Anti-Cancer 3-Styrylchromone Suppresses Inflammatory Response via HMGB1-RAGE Signaling. Medicines 2021, 8, 17. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, B.; Xiao, Y.; Xue, M.; Liu, T.; Cao, H.; Chen, J. Discovery of novel CA-4 analogs as dual inhibitors of tubulin polymerization and PD-1/PD-L1 interaction for cancer treatment. Eur. J. Med. Chem. 2021, 213, 113058. [Google Scholar] [CrossRef]
- Lee, H.-Z.; Kwitkowski, V.E.; Del Valle, P.L.; Ricci, M.S.; Saber, H.; Habtemariam, B.A.; Bullock, J.; Bloomquist, E.; Li Shen, Y.; Chen, X.-H.; et al. FDA Approval: Belinostat for the Treatment of Patients with Relapsed or Refractory Peripheral T-cell Lymphoma. Clin. Cancer Res. 2015, 21, 2666–2670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassab, A.E.; Gedawy, E.M. Novel ciprofloxacin hybrids using biology oriented drug synthesis (BIODS) approach: Anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis, topoisomerase II inhibition, and antibacterial activity. Eur. J. Med. Chem. 2018, 150, 403–418. [Google Scholar] [CrossRef]
- Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.-M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018, 59, 455–467. [Google Scholar]
- Yang, C.; Qin, S. Apatinib targets both tumor and endothelial cells in hepatocellular carcinoma. Cancer Med. 2018, 7, 4570–4583. [Google Scholar] [CrossRef] [Green Version]
- Owen, H.C.; Appiah, S.; Hasan, N.; Ghali, L.; Elayat, G.; Bell, C. Chapter Eleven - Phytochemical Modulation of Apoptosis and Autophagy: Strategies to Overcome Chemoresistance in Leukemic Stem Cells in the Bone Marrow Microenvironment. Int. Rev. Neurobiol. 2017, 135, 249–278. [Google Scholar] [PubMed]
- Kesavardhana, S.; Malireddi, R.S.; Kanneganti, T.-D. Caspases in cell death, inflammation, and gasdermin-induced pyroptosis. Annu. Rev. Immunol. 2020, 38, 567–582. [Google Scholar] [CrossRef] [Green Version]
- Araya, L.E.; Soni, I.V.; Hardy, J.A.; Julien, O. Deorphanizing Caspase-3 and Caspase-9 Substrates In and Out of Apoptosis with Deep Substrate Profiling. ACS Chem. Biol. 2021, 16, 2280–2296. [Google Scholar] [CrossRef] [PubMed]
Comp. No. | IC50 Value (μM) |
---|---|
MCF-7 | |
3a | 11.43 ± 1.02 |
3b | 35.72 ± 1.57 |
3c | 86.44 ± 1.67 |
3d | 57.09 ± 1.49 |
3e | 17.05 ± 0.83 |
3f | 9.02 ± 0.37 |
3g | 10.74 ± 0.48 |
3h | 10.09 ± 0.42 |
3i | 4.37 ± 0.20 |
3j | 21.16 ± 0.51 |
3k | 6.19 ± 0.27 |
3l | 2.19 ± 0.12 |
3m | 2.88 ± 0.18 |
3n | 3.51 ± 0.16 |
4 | 31.78 ± 1.27 |
STU | 4.19 ± 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Warhi, T.; Alqahtani, L.S.; Abualnaja, M.; Beigh, S.; Abu Ali, O.A.; Elsaid, F.G.; Shati, A.A.; Saleem, R.M.; Maghrabi, A.H.A.; Alharthi, A.A.; et al. Design, Synthesis, and In Vitro Antiproliferative Screening of New Hydrazone Derivatives Containing cis-(4-Chlorostyryl) Amide Moiety. Symmetry 2022, 14, 2457. https://doi.org/10.3390/sym14112457
Al-Warhi T, Alqahtani LS, Abualnaja M, Beigh S, Abu Ali OA, Elsaid FG, Shati AA, Saleem RM, Maghrabi AHA, Alharthi AA, et al. Design, Synthesis, and In Vitro Antiproliferative Screening of New Hydrazone Derivatives Containing cis-(4-Chlorostyryl) Amide Moiety. Symmetry. 2022; 14(11):2457. https://doi.org/10.3390/sym14112457
Chicago/Turabian StyleAl-Warhi, Tarfah, Leena S. Alqahtani, Matokah Abualnaja, Saba Beigh, Ola A. Abu Ali, Fahmy G. Elsaid, Ali A. Shati, Rasha Mohammed Saleem, Ali Hassan Ahmed Maghrabi, Amani Abdulrahman Alharthi, and et al. 2022. "Design, Synthesis, and In Vitro Antiproliferative Screening of New Hydrazone Derivatives Containing cis-(4-Chlorostyryl) Amide Moiety" Symmetry 14, no. 11: 2457. https://doi.org/10.3390/sym14112457
APA StyleAl-Warhi, T., Alqahtani, L. S., Abualnaja, M., Beigh, S., Abu Ali, O. A., Elsaid, F. G., Shati, A. A., Saleem, R. M., Maghrabi, A. H. A., Alharthi, A. A., Alyamani, A., Fayad, E., Abu Almaaty, A. H., Zaki, I., & Hamouda, S. (2022). Design, Synthesis, and In Vitro Antiproliferative Screening of New Hydrazone Derivatives Containing cis-(4-Chlorostyryl) Amide Moiety. Symmetry, 14(11), 2457. https://doi.org/10.3390/sym14112457